
What's new in QLM v16

 What's new in QLM v16

.NET 6
 The QLM Management Console now uses .NET6 - Windows
 The QlmLicenseLib.dll is now available for .NET6.
 The QlmLicenseWizard.exe is now available for .NET 6 - Windows only.

QLM Management Console
 The tooltip over the license key in the Manage Keys tab now displays Analytics information such

as the real Last Accessed Date.
 You can now create email notifications based on changes to Customers table such as when a

new customer is created.
 Setting the SMTP Server on the client side now automatically updates the server's settings.
 Scheduled Tasks - You can now force the Start Time of a scheduled task to always run at a

specified time.
 Scheduled Tasks - Performance and memory footprint improvement when sending automated

emails.

QLM License Wizard
 User Registration Page - New Properties
 QlmTrialKeyUserGroup allows you to set the Affiliate ID when generating a trial key from the

QLM License Wizard.
 QlmTrialKeyArgs allows you to set the any argument when generating a trial key from the QLM

License Wizard.
 QlmTrialKeyUserData allows you to set the User Data when generating a trial key from the

QLM License Wizard.

Library and API
 All QLM DLLs are now digitally signed.
 Added strong name validation of QlmLicenseLib.dll to the LicenseValidator class to prevent

hacking DLL for non .NET applications that dynamically load the DLL. You must generate a
new LicenseValidator class to take advantage of this feature.

 Added support for QlmUniqueSystemIdentifier2.
 New API GetUniqueCombinedSystemIdentifier that combines system identifiers.

Page 1

License Server
 Added 2 server properties to configure the trial registration form title and caption.
 QLM Self Help now displays the detailed license information including remaining deactivations

allowed and Analytics.
 New Server Property: BlockComputerIDs allows you to block specific computer IDs from

getting activated.

New Requirements
 The QLM License Server now requires .NET 4.62.
 The QLM Customer Portal now requires .NET 4.72.

Important Notes
 EXE Protection will no longer be maintained.
 QLM Engine Version 4.0 and lower are no longer supported.

Upgrade Procedure
 To uprade to QLM v16, you must first install the QLM Management Console on your client system by
running the qlmsetup16.exe. To determine if you are eligible to a v16 upgrade, you may contact us or
click the About tab. You can download QLM v16 from our web site
.
QLM License Server Upgrade
 If we are hosting your QLM License Server, contact us to upgrade the License Server. If you are
hosting your own License server, there are 2 ways to upgrade: in-place or in parallel. In-place upgrade
will replace your existing server with the new one while the parallel upgrade allows you to run both
servers in parallel until you are ready to switch. If you are upgrading from QLM v7+, the in-place
upgrade is safe. If you are upgrading from earlier versions, we recommend the parallel upgrade.
In-Place Upgrade

1. Update the DLLs on your web server with the DLLs located in %Public%\Documents\Quick
License Manager\DeployToServer\QlmLicenseServer\bin

2. If you have not executed the sql2005.aspnet.sql script when you created your QLM 5.x DB, this
script is now required. The script is located in%Public%\Documents\Quick License
Manager\DeployToServer\QlmLicenseServer\Db\sql2005.aspnet.sql. This step is not required if
you were running QLM v7+.

3. Ensure the Application Pool associated to the QLM License Server is set to use .NET 4.0.
4. Once the License Server is updated, start the QLM Management Console, go to Sites and click

on Upgrade Database Schema.
5. If you are using our eCommerce integration, do the following:

o Go to the Manage Keys tab
o Click on the Commerce Providers item in the toolbar
o Select the eCommerce provider you are using
o Modify the Dll field and replace the existing value with: QlmWebService.dll
o Ensure that the eCommerce Provider that you are using is enabled.

Parallel Upgrade
 To upgrade the QLM License Server, we recommend that you create a new virtual directory and install
a QLM License Server in parallel to your existing QLM x.y License Server. Both License Servers can
be configured to point to the same database. Once the QLM v16 License Server is configured and

Page 2

https://soraco.co/quick-license-manager/qlm-downloads/

properly running, you can remove the QLM x.y License Server.
1. Create a new folder called qlm16 on your web server in the same parent folder as your existing

QLM License Server.
2. Copy the files located in %Public%\Documents\Quick License

Manager\DeployToServer\QlmLicenseServer to qlm16
3. If you have not executed the sql2005.aspnet.sql script when you created your QLM 5.x DB, this

script is now required. The script is located in%Public%\Documents\Quick License
Manager\DeployToServer\QlmLicenseServer\Db\sql2005.aspnet.sql. This step is not required if
you were running QLM v7+.

4. Copy the following web.config settings from your exising QLM License Server web.config file to
the new one:
1. connectionStrings
2. communicationEncryptionKey
3. adminEncryptionKey
4. sqlSyntax

5. In IIS, create a new application and associate it to the same Application Pool as your existing
QLM License Server.

6. Start the QLM application, go to Sites
7. Select your existing License Server
8. Click Copy and enter a new name of the copy
9. Update the URL to point to the new license server
10.Click on Upgrade Database Schema.
11. If you are using our eCommerce integration, do the following:

1. Go to the Manage Keys tab
2. Click on the Commerce Providers item in the toolbar
3. Select the eCommerce provider you are using
4. Modify the Dll field and replace the existing value with: QlmWebService.dll
5. Ensure that the eCommerce Provider that you are using is enabled.

QLM Portal Upgrade

 On your web server, rename the QlmPortal folder to QlmPortal_old
 Copy %Public%\Documents\Quick License Manager\DeployToServer\QlmPortal to your web

server in the same location as the previous QlmPortal folder
 Edit the web.config file in the new QlmPortal and update the following settings to match the

values in the previous web.config file:
o connectionStrings
o communicationEncryptionKey
o adminEncryptionKey
o webServiceUrl
o sqlSyntax

QlmCustomerSite Upgrade

 Note that QlmAspLicenseSite has been renamed to QlmCustomerSite
 On your web server, rename the QlmCustomerSite folder to QlmCustomerSite_old
 Copy %Public%\Documents\Quick License Manager\DeployToServer\QlmCustomerSite to

your web server in the same location as the previous QlmCustomerSite folder
 Edit the web.config file in the new QlmCustomerSite and update the following settings to match

the values in the previous web.config file:
o connectionStrings
o communicationEncryptionKey

Page 3

o adminEncryptionKey
o webServiceUrl
o sqlSyntax

 Update the IIS Application to point to the QlmCustomerSite folder instead of
the QlmAspLicenseSite folder.

To upgrade your source code to QLM v16:
 If you are upgrading from QLMv9 or earlier and if you are using the QLM License Wizard, be it

the .NET Control or the standalone executable, you will need to customize the look & feel of the
control and regenerate the settings xml file. Note that as of QLM v9, only one settings file is
required. The UI Settings xml file is no longer required since all settings are stored in a single file.

 You may want to upgrade your LicenseValidator class to the new version. The new version
contains additional code to optionally perform server side validation. It also supports a seamless
reactivation process for subscriptions.

 If you have implemented floating licences, it is recommended that you review the new QLM
Enterprise sample and follow the same approach as the new sample.

IMPORTANT -
QLM Engine Version
If you are upgrading from QLM v4 or earlier and you have issued license keys with QLM Engine version
4.0.00, 3.0.00, 2.4.11 or 2.4.07, we no longer support these keys. You must upgrade your customers to
use keys created with QLM Engine Version 5.0.00.

Page 4

Overview
 Quick License Manager (QLM) is the ideal tool for software vendors who need to add licensing support
to their products.
QLM uses several measures to defend the integrity of your software product. These include:
Tracking the date of first installation:
 The date on which your software was first run on the user’s machine is permanently recorded by QLM.
Even if the user were to uninstall the product then re-install it at a later date, the original trial period would
remain in effect.
Monitoring the system date for tampering:
 If the user sets the system date back manually to defeat the evaluation period, QLM detects the
tampering and disables the license.
Creating computer-bound keys:
 A license key created under QLM can be bound to a single computer. Attempts to use the same key on
other computers will not succeed.
Safeguarding the licensing DLL:
 An easy-to-use mechanism allows you to verify at run-time that the code in QLM’s licensing library has
not been surreptitiously modified.
Using asymmetric encryption:
 License keys created under QLM are encoded with an asymmetric encryption algorithm based on public
and private keys.

Page 5

Overview
 QuickLicenseManager is the ideal tool for software vendors who need to quickly add license key
support to their products. Both evaluation and permanent license keys can be generated.
Adding licensing support to your application is a 3 step process:

 Define your products.
 Generate license keys.
 Modify your application to capture and validate a license key.

The simplest way to get started with QLM is to launch the Getting Started Wizard by clicking on the
Get Started tab then selecting Guide Me
.
For a quick overview of QLM, take a look at our online demos below.
Define products
 The first step in creating license keys for your products is to define each product. Click on the Define
Products tab and then click on New.
Enter the Product Name, the Major and Minor version of the product. The Product ID and the GUID
fields are automatically generated. You will need these values when you use the API to validate license
keys.
For more details about defining products, refer to the Define Products
 section in the User Interface Guide.
Generate license keys
 Once you have defined your products, you can generate license keys for each product. There are 2
types of license keys: permanent, and evaluation keys. Evaluation keys can specify the duration of the
evaluation, an expiry date or both. In case both an expiry date and a duration period are specified, the
key will expire when any of the 2 criteria are met.
To generate license keys using QLM Express, click on the Generate Keys tab. Select a Product, the
number of keys to generate, the type of keys to generate and then click on the Generate button. Quick
License Manager typically generates unique license keys, however, under some circumstances it may
be possible that a key value is duplicated. Quick License Manager Express does not store generated
keys. It is up to the user to track the generated keys if needed. For more details about creating license
keys with QLM Express, refer to the Create Licenses
 section in the User Interface Guide.
To generate license keys using QLM Pro or Enterprise, click on the Manage Keys tab, then click on
the Create button. Select a Product, the number of keys to generate, the type of keys to generate and
then click on the OK button. For more details about creating license keys, refer to the Create Licenses
 section in the User Interface Guide.
Modify your application
 To capture and validate a license key in your code, use the Protect your application
 to generate the source code required to add licensing to your application.
Online Demos

 QLM Pro Demo

QLM Express Demo

Online Activation Demo

 FastSpring (eCommerce provider) Integration Demo
 For more online demos, refer to our web site or run the Get Started Wizard in the QLM Console.

Page 6

http://quicklicensemanager.com/demos/qlmweb/qlmweb.html
http://quicklicensemanager.com/demos/qlmweb/qlmweb.html
http://soraco.co/demos/qlmexpress5/qlmexpress5.html
http://soraco.co/demos/qlmexpress5/qlmexpress5.html
http://soraco.co/demos/QlmDotNetControlv5/QlmDotNetControlv5.html
http://soraco.co/demos/QlmDotNetControlv5/QlmDotNetControlv5.html
https://www.youtube.com/watch?v=Q7qJdQb0Qnw
https://www.youtube.com/watch?v=Q7qJdQb0Qnw

License key types
 Quick License Manager supports 5 different types of license keys:

 Evaluation or Subscription License Keys: Evaluation keys can specify the duration of the
evaluation, an expiry date or both. In case both an expiry date and a duration are specified, the
license will be flagged as expired when the duration period is exceeded or the expiration date has
passed.

 Not Computer Bound or Generic: Generic keys are not bound to a specific computer. The
advantage of this type of key is that you can pre-generate a large set of keys and just distribute
them to any customer. The disadvantage is that any user who gets access to a key is able to use
that key on any computer.

 Bound to Computer Name: Computer Name bound keys are keys that are bound to a specific
computer by encrypting the name of the computer in the license key. Computer Name bound
keys can be generated from the Quick License Manager user interface or programmatically using
the Quick License Manager API (CreateLicenseKeyEx). The advantage of Computer Name
bound keys is that a key cannot be resued on other computers (unless they have the same
name).

 User Defined: User defined keys are computer bound keys. The computer identifier that is used
to uniquely identify a computer is user defined. For example, if you want to create a computer
bound key that is bound to the serial number of the hard disk, you would need to do the
following:

Create your own function to get the serial number of the hard disk.
To generate a key manually using the Quick License Manager user interface, you
would need to generate the hard disk serial number in your application, display it to
the user and ask the user to e-mail it to you. You would then enter this value in the
Quick License Manger user interface and generate the key.
To generate a key programmatically, typically from a License Server as shown in
the provided sample, you would generate the hard disk serial number in your code
and invoke your License Server providing the serial number. The License Server
would then use the CreateLicenseKeyEx API to generate and return a key bound
to the serial number of the hard disk.
To validate a key in your code, you would generate the hard disk serial number
and provide that value to the ValidateLicenseEx API.

 Activation Key: An activation key is a generic key that does not enable your software. It just
allows a user to request a computer bound key. This type of key is typically used for online
software registration or activation. This is a typical scenario:

A customer buys your software online. You automatically generate an activation
key and send it to the customer.
The customer installs your software and enters the activation key. Your software
connects over the internet to your License Server providing the information
required to create a computer bound key. The License Server creates the key and
returns it to your application.
Your application then validates the returned computer bound key and enables the
software.

License key length
 QLM packs several pieces of information in the license key. This information can be extracted at runtime
to determine the type of license, the expiry date, the enabled features and so on. Depending on what
information is packed in the license key, the length of the license key will vary.

Page 7

Base Key Length 26 characters
Trial Key - Duration based +3 characters
Trial Key - Expiry date based +5 characters
With Features +8 characters
With embedded seats (multiple activations) +4 characters

Page 8

Features
 As of QLM 4.0, you can embed up to 32 features in a license key. Features are divided into 4 sets with
8 features per set.
To define features, click on Define Products, select a product and add your features.
You can generate license keys with embedded features in several ways:

 In the QLM console, click on Generate Keys, select the product and features to enable and then
click on Generate.

 Using the QLM CreateLicenseKeyEx4 API (IsLicense50.dll)
 Using the QLM .NET API CreateActivationKey (QlmLicenseLib.dll)
 Using the QLM .NET API CreateActivationKeyWithExpiryDate (QlmLicenseLib.dll)
 Using the QLM .NET API CreateOrder (QlmLicenseLib.dll)

To enable support for 32 features, you need to select the QLM Engine version 4.0.00 or higher. To
verify if a feature is enabled in your code, use the IsFeatureEnabled API. The sample located in:
%Public%\Documents\Quick License Manager\Samples\QLMExpress\DotNet\C#\QlmExpressSample
demonstrates how to verify if a feature is enabled in your code.

Page 9

Redistributables
 The binaries that need to be included with a QLM protected application are listed in the table below.
Application Type QLM Binaries to distribute

Windows Forms .NET 2.0 or higher

redistrib\.net2.0\QlmLicenseLib.dll
redistrib\.net2.0\QlmControls.dll
redistrib\.net2.0\QlmLicenseWizard.exe
or
redistrib\.net4.0\QlmLicenseLib.dll
redistrib\.net4.0\QlmControls.dll
redistrib\.net4.0\QlmLicenseWizard.exe

WPF .NET 4.0 or higher redistrib\.net4.0\QlmLicenseLib.dll
redistrib\.net4.0\QlmWpfControls.dll

ASP.NET 2.0 or higher
redistrib\.net2.0\QlmLicenseLib.dll
or
redistrib\.net4.0\QlmLicenseLib.dll

Office 2003 or higher

redistrib\.net2.0\QlmLicenseLib.dll
redistrib\.net2.0\QlmLicenseWizard.exe
or
redistrib\.net4.0\QlmLicenseLib.dll
redistrib\.net4.0\QlmLicenseWizard.exe

Outlook Add-in

redistrib\.net2.0\QlmLicenseLib.dll
redistrib\.net2.0\QlmLicenseWizard.exe
or
redistrib\.net4.0\QlmLicenseLib.dll
redistrib\.net4.0\QlmLicenseWizard.exe

C++

redistrib\.net2.0\QlmLicenseLib.dll
redistrib\.net2.0\QlmLicenseWizard.exe
or
redistrib\.net4.0\QlmLicenseLib.dll
redistrib\.net4.0\QlmLicenseWizard.exe

VB6

redistrib\.net2.0\QlmLicenseLib.dll
redistrib\.net2.0\QlmLicenseWizard.exe
or
redistrib\.net4.0\QlmLicenseLib.dll
redistrib\.net4.0\QlmLicenseWizard.exe

 What is the difference between "QlmLicenseLib.dll" and
"QlmLicenseLibNotEmbedded\QlmLicenseLib.dll"
QlmLicenseLib.dll includes all the QLM Express, Professional and Enterprise functionality (excluding
user interface components). In addition, QlmLicenseLib.dll acts as a wrapper for IsLicense50.dll which is
a C++ DLL that contains our core licensing engine. QlmLicenseLib.dll depends on IsLicense50.dll.
IsLicense50.dll comes in 2 versions: one version of 32 bit systems and another version for 64 bit
systems. When your application is running as a 64 bit app, we need to load the 64 bit version of
IsLicense50.dll and similarly for 32 bit apps. To simplify deployment of the QLM binaries,
QlmLicenseLib.dll includes the two versions of the IsLicense50.dll as resources. At runtime, the correct
version of IsLicense50.dll is automatically extracted, temporarily stored on disk then loaded from disk. If
it cannot be stored on disk due to security limitations, it is loaded directly from memory.

Page 10

QlmLicenseLibNotEmbedded\QlmLicenseLib.dll is a version of QLmLicenseLib.dll that does not embed
IsLicense50.dll. It is included for QLM 7 or before customers who used this deployment method in
earlier versions of QLM. Unless advised by our support team, you should not need to use this version if
you are using QLM 8 or later.

Page 11

Protect your software
 QLM protects against breaking the licensing in the following ways:

 QLM stores the date the software was first ran. If the user uninstalls the software and reinstalls it,
the evaluation period continues from its previous state. This means users cannot just uninstall and
reinstall the software to reinitialize the trial period.

 QLM detects if a user sets the date back and disables the license in this event.
 QLM allows you to define computer bound keys so that a license key cannot be reused on

another computer.
 QLM provides a mechanism to detect if the QLM DLL was tampered.
 QLM license keys are protected with an encryption that each customer defines, per product.

This means that other QLM customers cannot decrypt your license keys.
Protect against tampering of the QLM DLLs
 To protect against a user modifying the IsLicense50.dll or replacing this DLL, the IsLicense50.dll is
digitall signed with a Microsoft Authenticode Certificate. The QLM .NET API automatically validates the
signature of the DLLs prior to loading it.
All other QLM DLLs are .NET assemblies are are digitally signed as well. Any attempt at modifying
these DLLs will result in a failure to load the DLL.

Page 12

User Interface Reference
 The QLM Console is a comprehensive command center for operating Quick License Manager. Across
the top of the Console is a menu bar with commands for accessing each of eight main areas. These are
introduced briefly here, then covered fully in the sections that follow.
Get Started

This area is home to the Dashboard, where you’ll begin each Console session, and to the
QLM Getting Started Wizard, an optional tool for helping you set up the licensing for one of
your products efficiently. The wizard will recommend one of QLM Express, QLM
Professional and QLM Enterprise as best meeting the licensing requirements of a particular
product. It will also provide links to relevant informational and tutorial resources.

Define Products

Before you can use QLM to manage the licensing of a product, you must add the product to
QLM using the tools in this area. Once a product has been defined, you can begin configuring
the keys and licensing options that will govern user access to the product’s features.

Protect your application

This area contains the Code Generator Wizard, which will generate code in any of several
languages for adding license validation to your application. The wizard also lets you customize
the built-in license registration form, if you choose to use it, for better integration with your
product. To see how your configuration choices for the license registration form will look
when it goes live, click the Test License Wizard button in the ribbon.

Generate keys

This area’s purpose is to generate license keys for your products interactively (rather than in
code). Several kinds of keys are supported, including the activation keys that let the user
obtain permanent computer-bound or computer-independent keys. Such properties of the
key as its expiry terms, and the particular set of features it will enable, can be defined with the
controls here. Keys generated from this area are neither saved nor managed by QLM. To
generate keys that are published to the database, create keys via the Manage Keys section.

Page 13

Validate keys

This area lets you check the validity of an existing key with respect to a particular product. If
the key is valid, the set of features that it enables, the number of licenses it embeds, and its
other properties are displayed.

Manage keys

With its many controls, this area provides access to more than 20 license management
functions in seven control groups: License Keys, Fraud Detection, Mail, License Server,
Tools, Cloud and Backup. The tools and reports available here make Manage keys a
particularly ‘key’ area of the Console’s user interface.

Manage customers

The customer records in your QLM database are the focus here. Controls are provided to
create, edit, print and delete records, and to refresh synchronization with the database.

About

This area displays your licensing information for this copy of QLM. If you have not yet
activated your license, you can do so here, using the same QLM license activation form
provided as a programming component to QLM customers. Another control in this area
checks for program updates; this too demonstrates the use of a QLM capability available to
customers.

Page 14

Get Started

The first of the QLM Console’s eight major functional areas is accessed with Get Started at
the left-hand end of the Console’s main ribbon bar. Two Console features with which you
will quickly become familiar are the Dashboard, which is the starting point of each session,
and the Getting Started Wizard, an optional but handy tool for helping you set up product
licensing under QLM. Both of these are found in the Getting Started control group, along
with information pages detailing each of the three levels of QLM: Express, Professional and
Enterprise. The single button in the Tutorials control group provides a link to online
information resources with detailed information on selected topics.

THE DASHBOARD

The Metro-style tiles that make up the Dashboard are organized by default into three
columns. A row in any column contains either one full-width or two half-width tiles. (If the
window height is sufficiently reduced, doubled columns or tripled columns may be seen.) The
organization of the Dashboard can be customized by dragging individual tiles from one
column to another, or into an empty location to create a new column. As you drag a tile to
locations in other columns, the tiles already there move aside as necessary to indicate where
the new arrival will lodge. The default layout of Dashboard tiles in three columns.

System Information
The four smaller tiles in the left-hand column of the
default layout show vital statistics from the QLM
database, with counts of customers, total orders,
today’s orders, and recent orders. (See Manage
Keys ? Options to review or adjust the meaning of
‘recent’.) The bottom tile displays news items about
QLM. Click an item to view the full story in your
web browser.

Quick License Manager Information

Page 15

The tiles in the center column provide information
about the latest QLM version as well as News
Releases about QLM. The Refresh tile
resynchronizes the Dashboard display with the QLM
database.

License Information
The tiles in the right-hand column of the default
Dashboard layout show information about your
QLM license. The upper box gives a verbal status
report regarding the license. The one beneath it lists
the computers on which you are registered to run
QLM. In the bottom row are displayed the number
of licenses you have available, and the number of
those already in use.

GET STARTED WIZARD

The Getting Started Wizard helps you find the best path into QLM for a particular licensing scenario by leading you
through a questionnaire to determine three requirements:

Programming language: .NET 2.0 and higher languages are directly supported by QLM, as are Visual Basic 6.0,
C++, Excel and Access. Other languages can also make use of the QLM API if they are capable of interfacing with
.NET assemblies, COM objects (ActiveX), or native DLLs.

Page 16

Application type: The wizard offers “Standalone Windows application”, “Web App”, and “Windows Service” as
configured choices. If your application does not fall into one of these categories (“Other”), contact us for advice
specific to your situation.

Page 17

License model: Your answer to this question determines the edition of QLM that you will need for your application.
For instance, if you select “Simple license validation” as your license model, the wizard will recommend QLM Express
as best meeting your needs. The wizard then provides a page of links to relevant tutorials and code samples that will
help get you started without wasted effort.

Page 18

Page 19

Define Products

A QLM license key is associated with a particular product as identified by its name and version in the
Define Products tab.
To add a product, click on the Add button and enter the product information.
The full set of properties is divided amongst four tabs, Product Information, Latest Version, Keys
and Vendor.

PRODUCT INFORMATION
Product name: Enter the base name of your product without versioning.

Major version, Minor version: This pair of numbers, both of which can have at most two digits,
specify a particular generation and release of the product for licensing. Taken together, the name and the
two version fields constitute a unique handle by which this product will be identified in QLM.

Encryption key: Enter an encryption key to encrypt the license key. An encryption key is like a
password. A license key can only be decrypted with this password. The ! character is not allowed in the
encryption key. Encryption keys are no longer used as of QLM 5. A PKI algorithm is now employed
for encrypting the license key. Each time you define a product in QLM, a key pair is created for it.
Typically a different key pair is used for each product. You will use the private key in the pair to
generate license keys. The public key is used to decrypt license keys. It must be included in your code
and set before licenses can be validated.

Product ID: This field is automatically generated when the database record for the product is stored,
and remains permanently associated with it from then on.

Release Date: The Release Date is used in conjunction with the Maintenance Plan feature to determine
upgrade entitlement. Provided the Maintenance Plan Renewal Date is greater than the Release Date, the
customer is entitled to the upgrade.

GUID: This identifier is automatically generated for your project by QLM. It is used as a key to the
evaluation information for the product in Windows Registry under:
HKEY_CLASSES_ROOT\CLSID\<GUID>. The New button adjoining the field generates a new
GUID. Calls to the DefineProduct API in your application will need to be updated if you do this.

Features: Up to four feature sets with up to eight licensable features in each can be defined for your
product. The licenses for the product can be configured on creation to enable one or more of these sets,
thus making their individual features available to the user who holds the license.
The information about the features you have so far defined for the product is found on the Features list.
Each line displays the set number (0 to 3), a numeric ID, and a name provided by you. The numeric
values used as IDs are those corresponding to the individual bits of a flag byte: 1, 2, 4, and so on up to
128. To manage the Features list, three buttons are provided: Add, to define a new feature; Edit, to
change the assignable properties of the selected feature – its name and the set that it belongs to; and
Remove to discard the feature altogether.
LATEST VERSION
The latest version tab has three fields that let you implement a “Check for Updates” feature in your

Page 20

software.

Latest Version: Enter in this field the latest version of your product. The format of this value is up to
you. The availability of a particular update will be determined in your running software by retrieving this
value and comparing it with the current version.

URL to latest version: Enter a URL to the latest version of your software for the QLM updating
framework to use.

Notes about latest version: The notes you enter in this text box can be retrieved for display to the user
along with other information about the update.
KEYS
QLM uses asymmetric encryption to encrypt license keys. The algorithm requires that a pair of
encryption keys, one public and one private, be predefined. QLM generates such a pair for you
automatically when your product is created. By default the same key-pair is used across all versions of
the same product.

Public key: You will need this value in order to validate a license in your program code.
Private key: This value is used for generating licenses. For the security of your licensing process, it is
recommended not to generate licenses in the protected software itself, but to use an external mechanism
for that purpose.
New: Click this button to generate a new key pair at any time. Remember, however, that your software
must be updated to use the new public key value.
Unmask: Check this box to view the actual text of your private key rather a string of asterisks.
VENDOR
The Cloud Edition of QLM allows you to associate a product with a particular vendor, by selecting the
vendor from the dropdown list and entering the vendor’s own unique ID for the product.

Page 21

Protect your application

QLM provides several approaches to protect your application. The Protect your application
wizard generates a helper class to include in your application as well as 2 configuration files
that specify the properties of the QLM License Wizard Control. The QLM License Wizard
Control is a license registration form to capture a license key and activate it.

The Protect your application tab in the QLM Management Console walks you through the
steps to protect your application. On the first step of the wizard. select the product you want
to protect, the QLM License Server and your programming language.
On step 2 of the wizard, select the Look & Feel options of the QLM License Wizard.
;
On Step 3 of the wizard, select the licensing options. These options reflect the properties of
the QlmLicense object as described in the API Reference section in the online help.
Finally, select a location where QLM will save the helper class and the xml files with your
customizations and click Save.
If your application is a C# or a VB.NET application, QLM can automatically update your
Visual Studio project with the required references and helper files.
PROTECTING .NET APPLICATIONS

For Windows Forms .NET applications, QLM provides 3 .NET Controls that you can easily
drop in your application. These controls are forms that allow the end-user to enter a license
key and activate it.
The 3 .NET controls are:

 QLM Express: QlmExpressLicenseValidationControl (QlmControls.dll)
 QLM Pro/Enterprise: QlmWebBasicActivationControl (QlmControls.dll)
 QLM Pro/Enterprise: QlmLicenseWizardCtrl (QlmControlLicenseWizard.dll).

Both QLM Pro/enterprise controls offer very similar functionality. The main difference
between these 2 controls is that the QlmLicenseWizardCtrl uses a wizard based graphical
user interface. In addition, the QlmLicenseWizardCtrl can read its properties from 2
external configuration file. These configuration files are generated by the Protect your
application wizard.

The QLM License Wizard Control is also available as a standalone executable that can run
alongside your application.

When you install QLM on your system, a Quick License Manager tab is added to your
Visual Studio toolbox that contains the QLM .NET Controls. If for any reason the Quick
License Manager tab was not added to your Visual Studio toolbox, you can attempt to
recreate this section by clicking on the Refresh button under Options / Enable Visual Studio
Integration. Note that the QLM tab is not added to the Visual Studio Express edition as this
edition does not support programmatic additions to its toolbox.

For more details about the QLM .NET Controls, refer to the API Reference.

For WPF applications, you can host the QLM Windows Forms Controls in WPF as

Page 22

described in this article.

If you are developing a web based ASP.NET application, the above .NET controls cannot
be used. A sample program is available that shows how to capture and activate a license key.
The sample is located here:
%Public%\Documents\Quick License
Manager\Samples\qlmpro\Windows\DotNet\Basic\C#\vs2008\AspDotNetSample

In addition to the .NET Controls that are required for capturing and activating a license key,
the Protect your application wizard generates a helper class that you need to add to your
application. The helper class has a method called ValidateLicenseAtStartup. You should
call this method when your application is launched. For more details about this method, refer
to the API reference section.

PROTECTING NON .NET APPLICATIONS

For non .NET applications, you have 2 options to catpure and activate a license: (a) you can
use the standalone QlmLicenseWizard.exe application to capture and activate a license or
(b) you can create your own license registration form. The former is clearly the simplest
approach.

For VB or C++ applications, the C++ applications, the Protect your application wizard
generates a helper class that you need to add to your application. The helper class has a
method called ValidateLicenAtStartup. You should call this method when your application is
launched. If the call to ValidateLicenseAtStartup fails or returns that activation is needed,
you should then invoke the QlmLicenseWizard.exe as follows:

QlmLicenseWizard.exe /settings "<path>\settings.xml" /uiSettings
"<path>\uiSettings.xml"

where both xml files referenced above are generated by the Protect your application
wizard.

When the QlmLicenseWizard.exe application exits, you should once again call
ValdiateLicenseAtStartup and confirm that the license is valid. If it is not, you either exit
your application or launch the QlmLicenseWizard.exe application again.

Page 23

http://keyvan.io/host-windows-forms-controls-in-wpf

Manage keys

The Manage Keys area in the QLM Console provides a task-oriented interface to the QLM database
located on your web server. Communication between the Manage Keys section and the database occurs
via the QLM License Server which must be configured from the Sites button.

The main window permits interactive configuration of the selection, ordering and grouping of result columns.
A query builder across the the top of the display lets you access data according to whatever combinations
of criteria you specify.

On the right, a column of preset queries provides answers to often-asked questions such as, "How many
licenses have we sold today?", "How many activation licenses were obtained yesterday for our products?",
and "Which customers on maintenance licenses are up for renewal in the near future?".

Items are shown in a grid or card view. To switch between the grid view and the card view, click on the
View Type dropdown box in the status bar and select the view of your choice. Views can be customized
and saved. To save a view, click on the Save icon in the status bar. To customize the fields displayed in the
card view, click on the wrench button on the card view toolbar.

Page 24

LICENSE KEYS

The buttons in this control group allows you to create or manage licenses. Note that all operations
described in this section can also be automated via the QLM API. Some operations are also available
via regular http requests that can be invoked directly from an eCommerce provider.

CREATE

This button opens the Create License dialog
window for creating activation keys interactively
and publishing them to the QLM database.
Providing such a key to a customer at the time of
sale begins a licensing transaction that ends when
the customer successful enters the activation key
into your installed application and a computer
bound license key is generated and sent back to
the customer.

ACTIVATE

Activates an activation key and generates a
computer bound license key. Use this button to
activate one or more keys interactively for testing
purposes or as other circumstances may require.
Ordinarily, activation should be performed by your
software while running on the customer’s machine.
To activate a key, you need to specify a unique
computer identifier for the customer’s computer.
The Computer Name field is optional but
recommended.

EDIT

This button brings up the Edit License Information
dialog window, which provides controls for editing
the data associated with a license.

RELEASE

Customers may sometimes require a transfer of
their license key to another computer. The Release
button clears the existing association between this
license and a computer; once this has been done,
the license can be reactivated on the new system.
QLM maintains a history of all released licenses
that can be queried by means of the Search
Released Licenses item in the Search dropdown
at the top right of the area header.

Page 25

DELETE

This button deletes, after confirmation, one or
more licenses selected in the data browser.
Deleting a license key removes all records
associated with the key.

UPGRADE

Upgrade your customer to a new version of your
product, an additional set of features, or a new
version of the QLM Engine. The upgrade process
generates a new activation key, which you must
convey to the customer for use. The previous
activation key is archived.

RENEW SUBSCRIPTION

If you sell your software as a subscription, you can
renew subscriptions without sending your
customers a new license key by moving back the
subscription expiry date using the Renew
Subscription date window. Customers simply
reactivate their existing license keys to renew their
subscriptions. When the subscription associated
with a license is extended, a computer-bound key
is generated with the revised expiry date. The
customer receives the new key by activating the
license.

Page 26

CREATE

The Create button creates an activation key. Activation keys can also be created via the QLM API and
more typically via QLM's integration with eCommerce providers. For more information about how to
automatically create activation keys during the purchasing process, read the eCommerce Providers
section in the QLM Professional help.

 Product: The product associated with the license key.
 Number of keys: The number of license keys to generate.
 Number of activations per key: The number of activations that this key will allow. QLM

manages the number of activated licenses and prevents the user from activating more than the
number of purchased licenses. For example, if a customer purchases 5 copies of your software,
rather than sending the customer 5 license keys, you create a sngle license key that can be
activated on 5 different computers.

 Floating seats: To implement Floating Licenses (requires QLM Enterprise), specify the number
of floating seats associated with this activation key. You can alternatively use this field to control
the number of instances of your application that can run in a Terminal Server session. An
instance is uniquely identified by a Terminal Server ssession for a specific user. To enable this
feature, set the LimitTerminalServerInstances property of the QlmLicense object to True in your
code.

 Customer E-mail: Associate the key to a customer.
 Features: Check any feature to enable in this license key (if you have not defined any features

for your product, this field will be empty).
 Affiliate: Select from this dropdown list the affiliate that sold the license, if applicable.
 Generic License: When this option is checked, the license key to be generated upon activation

will be generic – not bound to any particular computer.
 Maintenance Plan: When selected, license keys becomes version-agnostic. A customer

running an older version of your product will be able to activate his license key with the latest
version of your product. Use this option if you have offered your customers free upgrades to all
future versions or if the customer has purchased a maintenance plan. For more details, read the
Maintenance Plan section in the QLM Professional help.

 Expiry Criteria: If you would like the license to be time-limited, check this box to enable its
subordinate controls.

 Engine Version: If you have customers using an older version of QLM, select the appropriate
version of the QLM engine from this dropdown list on the Advanced tab. It is highly
recommeded to use QLM Engine version 5.0 or higher.

 User data: Use this text area on the Advaned tab to record any notes or text-encoded data to
associate with this license.

 Comments: Use this text area on the Comments tab to record any notes or text-encoded data
to associate with this license.

Finally, the Save Defaults button allows you to store default values for all the fields above. Subsequently
launching the Create dialog will automatically load the saved default values.

Page 27

ACTIVATE

The Activate button manually activates the selected license. Note that activation typically occurs from
within your application via the QLM API. Manual activation through the QLM Console is required in a
situation where the end-user cannot activate a license due to the lack of an internet connection. This is
typically referred to as Manual Activation v/s Online Activation.

 Activation Key: The key to activate (this field is read-only).
 Customer E-mail: The customer’s email address from an existing customer record.
 Computer Identifier: A unique identifier for the customer’s computer. This can be the

computer name, the MAC address, the hard disk serial number or any other identifier of your
choice.

 Computer Name: The name of the computer. Setting this field is not required but is
recommended for easy identification of the customer’s system.

 Product: The product associated with the license key.
 Engine Version: The version of the QLM Engine. If you have customers using an older version

of QLM, select the appropriate version of the QLM engine.
 Affiliate: The version of the QLM Engine. If you have customers using an older version of

QLM, select the appropriate version of the QLM engine.
 User Data: Associate any data to the license key

Page 28

Export and Print
 You can print or export license keys or customer information. When exporting, QLM can export to the
following file format: PDF, HTML, RTF, XLS, CSV, TXT or to an image file.
Below are the steps required to export or print data:

 Click on the Manage Keys or Manage Customers tab, depending on what you want to print or
export.

 Run a search to display the data you would like to print or export.
 On the status bar, locate the Print button and click it.
 In the Preview window that is displayed, click the Print button or the Export Document

button.
 You can also customize the look and feel of the data by clicking on the Customize button.

Page 29

FRAUD DETECTION

QLM can track illegal computers that connect to the License Server and logs information about these
computers in the database. An illegal computer is defined as a computer that has a valid license key but
whose license key is (a) not in the database or (b) in the database but registered for another computer.
This situation can occur if a user with a valid license key requests that his license be released from
computer A claiming to have uninstalled your program from computer A. If the user subsequently
attempts to connect to the License Server via computer A, QLM detects this computer as an illegal
computer and logs it in the database.

ILLEGAL COMPUTERS

This button displays a list of all the detected illegal
computers. QLM does not prevent all illegal
computer from running your application. Once an
illegal computer is detected, it is up to you to
decide the course of action to take by contacting
the customer and enquiring about the situation.

ACTIVATION ATTEMPTS

Click the Activation attempts button to view a list
of failed activation attempts. A failed activation is
typically due to multiple attempts to activate the
same license key on different computers. Though
failed activation attempts may indicate an intention
to illegally activate a license on a particular
computer, they can also be regarded as the sign of
a user who needs additional licenses for your
software.

Page 30

MAIL

QLM provides a tool to send personalized emails to your customers. Note that QLM sends emails via
your Outlook client.

SEND

To send a personalized email to a set of customers:
 Perform a search that returns a set of data.
 Select the items that you want to send an email

to or click on the Select All button.
 Click on the Mail/Send button.
 Select the Outlook profile to use.
 Select the email template to use.
 Select the E-mail account to use.
 The To field should already contains the email of

the selected customers.
 The additional To field allows you to type

additional email addresses. Note that if your
email message uses variables, these variables will
not be expanded when sending emails to the
additional recipients.

 Enter the Subject of the email.
 Enter the body of the email.
 Click on the Send button.

To create a personalized message, you can use variables
within the Subject and the Body of the message. Any of
the visible columns in License Management tab may be
used as variables.
For example, your message could read:

Hi %FullName%,
Thank you for your recent purchase of
%ProductName%
%MajorVersion%.%MinorVersion%.
Your license key is: %ActivationKey%.
Regards,
Tom

TEMPLATES

Templates allow you to create common email content
that can be readily used when sending manual or
automated emails to your customers. Automated emails
can be configured from the Scheduled Tasks option.

Aggregated Emails

Page 31

Typically, QLM sends an email to the customer
associated with the license along with any other email
you specify in the CC or BCC fields. In some cases
however, you may want to send an internal email to
yourself or to someone within your company instead of
the customer. To do so, you simply uncheck the "Send
To Customer" check box. When sending an internal
email, rather than receiving one email for each affected
record, you could configure QLM to send you an email
that aggregates results from several records. This is
accomplished by adding special tags in the email body to
identify the repeatable section.
There are two ways to configure an email to aggregates
multiple records into a single email:

Standard text format
If your email is formatted as plain text, you can delimit
the repeatable section with the following tags:

 qlm_content_start
 qlm_content_end

qlm_content_start identifies the beginning of the
repeatable section whereas qlm_content_end identifies
the end of the repeatable section.

Table format
If your email is formatted as plain text with a repeatable
section formatted as an html table, you can delimit the
repeatable section with the following tags:

 qlm_table
qlm_table identifies the beginning of the repeatable
section. Your table must start right after this tab. There is
no need to specify a tag to delimit the end.

Page 32

LICENSE SERVER

The options in this control group pertain to the QLM License Server, which acts as an interface
between a client system and the QLM database. Although you will typically have a single License
Server, the QLM Console can manage a list of License Server profiles, each with its own server
address along with data such as the type of database engine on the server, the encryption keys for
communicating with the License Server and so on. Until you set up your own License Server, and during
your QLM trial period, you can use the Default License Server provided by Soraco. Note that the
Default License Server does not allow you to upload your own products and can only manage keys for
the built-in Demo product that ships with the trial version of QLM.

SITES

Click this button to open the License Server Settings
dialog window, which lets you create, edit and select
your connection to the QLM License Server.

 URL: The URL to the QLM License Server is
typically of this form:
http://yourdomain/yourvirtualdirectory/qlmservic
e.asmx

 Authentication Method: Anonymous | Forms
Authentication | Windows Authentication. In
most cases, you will want to configure the web
service for Anonymous Authentication.

 Database: Select whether the database you
installed on the server uses Microsoft Access or
Microsoft SQL Server.

 Database Schema: When a new version of
QLM is released, the QLM database schema
may require updating. This button verifies and
updates your DB schema as required.

 Path to products file: The products you define
in QLM are initially stored locally on your
computer. Once you are satisfied with your
products definition, your products need to be
uploaded to the QLM database. QLM
automatically detects if your products are out of
sync with the server and prompts you to either
upload or download products from the server. If
you want to force an update, click on the
appropriate button in this section. Use this
feature with caution as you may inadvertently
overwrite the QLM database with the wrong
products or vice versa.

 Communication/Admin Encryption Key:
Communication between a client and the QLM
License Server is protected via an encryption
mechanism that prevents hackers from directly
calling your License Server. This is critical due to
the fact that the License Server is typically
configured to allow anonymous connections.

Page 33

http://yourdomain/yourvirtualdirectory/qlmservic

 Test: Once you have configured all fields, click
on the Test button to validate that you can
properly connect to the QLM License Server.

EVENT LOG

Errors detected in the QLM License Server are stored
in the QLM database. Use this option to view these
errors. At times, you may want to increase the verbosity
of the messages that the QLM License Server logs. This
can be accomplished by updating the loggingLevel
setting in the web.config file of the QLM License Server.
The highest logging level is 15. The recommended value
is 3.

If you increase the loggingLevel to 15 to diagnose a
specific issue, remember to set it back to 3 to avoid
bloating of your QLM database.

Page 34

 QLM Server Properties
 Following is a list of all the server properties that control the behaviour of the QLM License Server.
These properties can be set from the QLM Management Console under Manage Keys / Sites / Server
Properties.
Category Name Description
Options

allowMultipleProductVersionsOn
SameSystem

By default, if a user tries to
activate a new version of a given
product on the same computer,
QLM will reuse the existing
activation and overwrite previous
data. If you need to allow a
customer to install different
versions of your product on the
same system and activate each
separately, set this property to
true.

countRevokedTrials

Determine whether revoked trials
should be taken into account
when evaluating the
numberOfTrialLicensesAllowedP
erClient.

dbMaxRecords
Controls the maximum number of
license keys that can be created.

defaultCommerceProvider

The default ecommerce provider.
This ecommerce provider is used
if the is_vendor argument is not
specified in the URL.

defaultLicenseModelWhenDurati
onSet

When creating a license key with
an expiry duration, if the
LicenseModel value is not set, the
system will automatically set the
LicenseModel to this value.
Possible values are: permanent |
trial | subscription.

defaultLicenseModelWhenExpiry
DateSet

When creating a license key with
an expiry date, if the
LicenseModel value is not set, the
system will automatically set the
LicenseModel to this value.
Possible values are: permanent |
trial | subscription.

Page 35

defaultQlmVersion

Default version of the QLM
Engine. This version is used if the
is_qlmversion argument is not
specified in the URL.

enforceMaxTrialsWhenActivating

Controls whether QLM limits the
number of trial keys per system.
The number of trial keys allowed
per system is controlled with the
numberOfTrialLicensesAllowedP
erClient property.

historyTableLogRelease

When a license is deactivated,
QLM automatically logs a copy of
the license record prior to
deactivation in the QLM history
table. You can turn off this feature
by setting
the historyTableLogRelease
property to false. If you use QLM
Pro Cloud based floating licenses,
it is highly recommended to set
the historyTableLogRelease to
false.

historyTableLogUpgrade

When a license is upgraded,
QLM automatically logs a copy of
the license record prior to the
upgrade in the QLM history table.
You can turn off this feature by
setting the
historyTableLogUpgrade
property to false.

licenseKeyFormatGroupSize

When a license key is generated,
a separator (-) will be inserted
every n characters. This property
specifies the size of n.

licenseKeyFormatMaxGroupSize

When a license key is generated,
a separator (-) will be inserted
every n characters as specified by
the licenseKeyFormatGroupSize
property. The last group in the
license key may not be equal to n.
This property specifies the
maximum number of characters in
the last group.

Page 36

loggingLevel

Controls the QLM logging level.
Set this value to 15 for the highest
possible logging level.

maintenancePlanGracePeriod

An expired maintenance plan
cannot be renewed. This property
allows for a grace period after
expiry where the maintenance
plan can still be renewed.

maintenancePlanPeriodInDays

Default maintenance plan period
when the maintenance plan is
enabled.

maxActivationsEnforcedOnVMs
Only

Enforce the
maxActivationsPerSystem
property only if the
ComputerType is VM.

maxActivationsPerDay
Limits the number of activations
that can be performed in one day.

maxActivationsPerSystem

Limit the number of activations on
the same system. This is useful in
the context of virtual machine to
prevent users from cloning VMs
and activating the same license on
multiple virtual machines.

maxNewKeysPerDay

Limits the number of new
activation keys that can be
created in one day.

maxReleaseCount
The maximum number of times an
end-user can release a license.

maxReleasePerClient

When counting the number of
released licenses for a given
activation key, count only the
ones associated to a specific
client. By default, QLM counts all
the released licenses for a given
activation regardless of the client
system.

maxReleasePeriodInDays

When counting the number of
released licenses, only count the
ones that have been released in
the past

Page 37

"maxReleasePeriodInDays" days.
For example, if you want to allow
a user to release a license twice
per month, set
maxReleasePeriodInDays to 30
and maxReleaseCount to 2.

numberOfTrialLicensesAllowedP
erClient

Limits the number of trial licenses
that can be activated by a client.
A client is uniquely identified by a
ComputerID and a
ComputerName.

releaseLicenseRequiresAuthentica
tion

By default, releasing
(de-activating) a license via the
ReleaseLicenseHttp method
requires the user to authenticate.
This property allows you to relax
this requirement and invoke
ReleaseLicenseHttp without
authentication.

releaseLicenseUseAdminEncrypti
onKey

By default, releasing
(de-activating) a license
programmatically does not require
the AdminEncryptionKey
property to be set. This property
enforces the need to set the
AdminEncryptionKey property
prior to calling ReleaseLicense.

renewMaintenancePlanWhenSubs
criptionRenewed

When renewing a subscription via
the RenewSubscriptionHttp
method, automatically set the
Maintenance Renewal Date to the
same value as the Subscription
Expiry Date.

restrictManagementApiByIP

Calling the QLM Management
API requires knowledge of the
AdminEncrptionKey. For
additional security, you can limit
access to the QLM Management
API to a set of IP addresses
(semi comma separated). Note
that the local IP 127.0.0.1 is
implicitly allowed to call any
QLM Management API. Use this
feature with care because you
could lock youself out of QLM. If

Page 38

you do lock youself out, you must
delete the value of the
restrictManagementApiByIP
property in the ServerProperties
table in the QLM database.
Alternatively, you can install QLM
on the server and update the
restrictManagementApiByIP
property using the QLM
Management Console. This is
guaranteed to work because all
local requests bypass this
validation mechanism.

sqlSyntax

If you are using a MS-SQL
Server, set this property to sql. If
you are using MS-Access, set this
property to ms-access

subscriptionGracePeriod

An expired subscription cannot be
renewed. This property allows for
a grace period after expiry where
the subscription can still be
renewed.

trialDuration

Specify the duration of the trial
period used when calling the
CreateComputerBoundTrialKey
API.

updateExistingUserInformation

When creating a new license for a
user via an ecommerce provider,
if the user already exists, update
the user information (except the
email address), based on the new
order.

useDurationToSetExpiryDate

When creating an Activation Key
with an expiry duration, the QLM
License Server can convert the
specified duration to a specific
expiry date based on the current
date. The SubscriptionExpiryDate
field will be set to this expiry
date.

useDurationToSetExpiryDateWhe
nActivating

When activating a duration based
license, the QLM License Server
can convert the specified duration

Page 39

to a specific expiry date based on
the time of activation. The
SubscriptionExpiryDate field will
be set to this expiry date.

webMethodMaximumDelay

The QLM License Server
methods are protected against
being intercepted and replayed at
a later time. All methods are time
stamped. When the server detects
that the time stamp does not
match the server's time, the
method fails. This property allows
you to specify the maximum
allowed time discrepancy
between the end user system's
and the server. Time stamps are
time zone independent. The
default value is 600 seconds or 10
minutes.

Paypal

ignoreCustomArgument
Ignore data in the paypal custom
field
.

ignoreItemNumberArgument
Ignore data in the paypal item
number field
.

paypalLoggingLevel

Controls the paypal logging level.
Set this value to 15 for the highest
possible logging level.

paypalUrl

URL to the paypal IPN
processor. By default this value is
configure to connect to the paypal
sandbox. Once you are ready to
go live, you need to change this
URL to point to the real paypal
IPN process:
https://ipnpb.paypal.com/cgi-bin/
webscr

qlmVersion

Version of the QLM Engine.
Should be set to 5.0.00 unless
you want to generate license keys
compatible with QLM v4.0 and
earlier.

qlmWebServiceUrl URL to the QLM License Server,

Page 40

such as
http://server/qlm/qlmservice.asmx.

revokeLicenseOnRefund
When a paypal order is refunded,
automatically revoke the license.

revokeLicenseWhenSubscription
Canceled

When a paypal subscription is
canceled, automatically revoke
the license.

templateFile

Once an order is processed
successfully, QLM sends an email
to the customer with the license
key information. The email
template is name is defined by this
property. The file should be
located in the same folder as the
License Server.

vendorCompanyEmail
Email address of the vendor, i.e.
your email address.

vendorCompanyName
Company name of the vendor, i.e.
your company name.

Regional Settings

dateFormat

Format of a date (no time) sent by
a client via an http method call.
The default value is
yyyy-MM-dd.

eCommerceProviderDateFormat

Format of a date (no time) sent by
an eCommerce provider via an
http method call. The default value
is yyyy-MM-dd HH:mm:ss.

sqlDateFieldFormat

Date format use in SQL queries.
The default value is
YYYY-MM-DD.

sqlDateFormat

Date format use in SQL queries.
The default value is dd/MM/yyyy
HH:mm:ss.

sqlDateOnlyFormat

Date format use in SQL queries.
The default value is
YYYY-MM-DD.

Page 41

http://server/qlm/qlmservice.asmx.

sqlDateTimeFormat

Date time format used in SQL
queries. The default value is:
yyyy-MM-dd HH:mm:ss.

sqlDateValueFormat

Date format use in SQL queries.
The default value is
yyyy-MM-dd.

Security Settings

enableCreateActivationKey
Allows users to create an
activation key via the API.

enableCreateComputerBoundTria
l

Allows users to create a computer
bound key via the
CreateComputerBoundTrialKey
API.

enableCreateOrder
Allows users to create an order
via the API.

enableGetActivationKey

Allows users to create an
activation key via the the http call
GetActivationKey.

enableGetLatestVersionHttp

Allows users to get information
about the latest version via an http
call.

enableRegisterLicense
Allows users to register a QLM
portal license.

enableReleaseKeyHttp

Allows users to release
(de-activate) a license via an http
call.

enableRenewSubscriptionHttp
Allows users to renew a
subscription via an http call.

enableUpgradeDatabase
Allows users to perform a DB
upgrade.

enableUpgradeLicense
Allows user to register their
license.

enableUploadAffiliates Allows users to upload affiliates.

enableUploadECommerceProvid
ers

Allows users to upload
ecommerce providers.

Page 42

enableUploadProducts Allows users to upload products.

enableUploadUserAccounts
Allows users to upload user
accounts.

SMTP Settings

smtpEnableSSL Enables SMTP over SSL.

smtpFrom Email address of the sender.

smtpFromDisplayName Display name of the sender.

smtpPassword
Password associated to the
SMTP user.

smtpPort Port used by the SMTP server.

smtpServer
IP or DNS name of the mail
server.

smtpUser Name of the SMTP user.

CustomerSite

allowGenericEmailProviders

Determines if generic email
providers (such as hotmail, gmail)
can request license keys. You can
customize the list of generic email
providers in the web.config file.

isPhoneRequired

Determines if the phone field is
mandatory in the Trial Registration
Form.

isFullNameRequired

Determines if the full name field is
mandatory in the Trial Registration
Form.

isEmailRequired

Determines if the email field is
mandatory in the Trial Registration
Form.

isCompanyRequired

Determines if the company field is
mandatory in the Trial Registration
Form.

isCountryRequired Determines if the country field is
mandatory in the Trial Registration

Page 43

Form.

maxRegistrationsPerUser

The maximum number of
registrations allowed per user
(email). The default is 1.

preventMultipleRegistrationsPerD
omain

Prevent a user from requesting a
trial license key if another user
from the same domain has already
requested a trial. This property
works in conjunction with
the genericEmailProviders
property that allows you to
configure generic email providers
such as gmail.com and
hotmail.com.

preventMultipleRegistrationsPerM
ajorVersion

Prevent a user from requesting
multiple license keys for the same
product major version. The
default value is True.

preventMultipleRegistrationsPerM
inorVersion

Prevent a user from requesting
multiple license keys for the same
product minor version. The
default value is True.

preventMultipleRegistrationsPerPr
oduct

Prevent a user from requesting
multiple license keys for the same
product. The default value is True.

preventRegistrationsIfCustomer

Prevent a user from requesting a
trial license key if another user
from the same domain has already
purchased this product. This
property does not impact
customers that use generic Email
Providers.

registerButtonDoneUrl

The URL that the page redirects
to in the Trial Registration Form
when the user clicks the Done
button after registration is
completed.

Page 44

TOOLS

The buttons in this control group pertain to miscellenaous options such as QLM console configuration,
Affiliates Portal configuration, Dashboard settings and eCommerce Provider options.

OPTIONS
 Path to searches files : Searches configured in

the right hand panel are stored in a file called
queries.xml. You can configure the path of this
file. This is typically used if you want to share
searches with different people on your team and
store searches on a shared path (UNC) on your
LAN.

 Display options: When you create a query on
the fly by selecting the "field", "operator" and
"value" in the toolbar over the data set grid,
QLM can display the details of your query in the
status bar as you build it.

 Recent Orders: Allows you to configure the
horizon of the recent orders displayed in the
QLM dashboard.

 Upcoming Maintenance Renewals: Allows
you to configure the horizon of the upcoming
maintenance renewals displayed in the QLM
dashboard.

 URL to Affiliates Portal: Allows you to
configure the URL to the Affiliates Portal.

 QLM Agent: Allows you to configure whether
the QLM Agent automatically starts when you
login. The QLM Agent is responsible for running
the QLM Scheduled Tasks.

SCHEDULED TASKS

Click the Scheduled Tasks button to open a dialog
window where you can define operations to be carried
out automatically. The scheduled tasks that QLM can
execute include emailing notifications to your customers,
and displaying alerts when the QLM database is
updated. QLM installs with several scheduled tasks
predefined and ready for use. One task is designed to
handle the email notifications sent to maintenance plan
customers; the others are of the alert type. You can use
the supplied tasks as-is or customize them to suit your
needs. You can also define additional scheduled tasks if
required.

Note that as you transition from a trial version of QLM
to a purchased version with your own License Server,
you should modify the scheduled tasks to point to your

Page 45

own License Server instead of the Default/Demo
License Server.

COMMERCE PROVIDERS

The Commerce Providers button opens the Edit
Commerce Providers dialog widow, which lets you
quickly configure integration between your instance of
the QLM License Server and any of the major online
commerce providers. The typical settings that you will
need to modify are the User / Password. For more
details, review the eCommerce Provider section under
QLM Professional.

Page 46

QLM PORTAL

The QLM Portal is an add-on to QLM. It provides a web based interface for managing license keys.
The QLM Portal exposes the most common operations an administrator or a reseller requires to
manage their customers’ license keys. It requires user authentication and uses role based access control.
The QLM Portal is a perfect tool for your resellers or affiliates to manage their own customers while
keeping you, the vendor, in total control. You can specify how many license keys a reseller can
generate, which products they have access to and what operations they can perform. The QLM Portal
requires QLM Pro or Enterprise v7.2 or above and a SQL Server Database.

Through a role based access model, you control the privileges of user or group of users. The license key
limits that can be set are:

 Maximum number of trial keys per system.
 Maximum number of permanent keys per system.
 Maximum total keys.
 Maximum activations per key.

In addition, you can control which of the following operations a user is allowed to perform:
 Creating new keys.
 Activating keys.
 Releasing keys.
 Deleting keys.
 Creating customers.
 Deleting customers.
 Exporting keys.
 Setting the Expiry Duration of a new key.
 Setting the Expiry Date of a new key.
 Setting the Maintenance Plan option.
 Setting the Generic license option.

QLM PORTAL

The QLM Portal button provides a shortcut to
access the QLM Portal. To configure the URL of
the QLM Portal, click on Tools / Options button.

USER ACCOUNTS

User accounts are used to limit access to the
QLM Portal.
A user account can be associated to a User
Group.

When a user logs to the QLM Portal with an
account associated to a User Group, that user will
only see license keys associated to that User
Group.

Page 47

USER GROUPS

QLM allows you to define User Groups that share
common privileges. For example, if you sell your
application through a reseller, you would create a
User Group for the reseller and then create a user
account for each employee of the reseller that
needs to manage license keys.

Page 48

MANAGE CUSTOMERS

The Manage Customers area of the QLM Console provides five functions for managing customers'
records in the QLM database.

CREATE

Create a new customer in the QLM database.
Customers are uniquely identified by their email
address. If you define 2 customers with the same
email address, the records of the 2 customers will
be merged.

EDIT

Edit the information of the selected customer.

DELETE

Delete the record of the selected customer.

REFRESH

Refresh the list of customers.

Page 49

Database Backup and Restore
 QLM can schedule and perform backups of your database to your local computer. No special software
is required on the server side to perform the backup or the restore.
Below are the steps required to create a backup job:

 Click on the Backup tab.
 Click on the Create Backup button.

o Select the Enable checkbox.
 Type the name of the backup job.
 If you have multiple License Servers, select the License Server profile to use. Otherwise, select

the Default profile.
 Specify how often the backup job will run.
 If you have configured a Disaster Recovery site, specify wether you would like the backup to be

automatically restored to the DR site by checking the Auto Restore checkbox.
 If you have configured a Disaster Recovery site (DR), and the DR site is active, the backup will

by default backup the active site, be it the primary site or the DR site. If you would like to always
backup the primary site, whether it is active or passive, check the Always Backup Primary Site
option. Note that if the primary site is not active, the Auto Restore feature is automatically
disabled.

To restore a backup job, follow the steps outlined below:
 Click on the Restore tab.
 Expand the backup job and select the snapshot to restore.
 Select the tables to restore. Note that data in the target tables will be deleted.
 Click on the Restore button or Restore to DR site button.

QLM provides basic feedback as to whether the primary site and the DR sites are synchronized by
comparing the number of records in the LicenseKeys table on both sites. The first time you click on the
Backup tab, comparison between both sites is automatically triggered. You can request to compare two
sites at any time by clicking on the Compare Now or Compare All buttons.

Page 50

Generate Keys

The Generate Keys tab of the QLM Console lets you configure and create a license key –
or a list of license keys – for any of your products.
Note that license keys generated from this tab are not stored in the QLM database. To
create license keys that can be used for online activation, refer to the Create option under
the Manage Keys tab.
Select your product on the Product Name dropdown, then continue with the other controls
in the Options box as follows:

Number of embedded licenses: Enter here the number of licenses to embed in each
generated key. For example, if you enter “2” the user holding one of these keys will be
permitted to activate it on two different computers.

Number of license keys to generate: Enter the number of license keys to generate when
you click the Generate license keys button. This options is designed for working with online
payment systems that issue the next available key from a prepared list when your software is
purchased. Note that licenses distributed in this way do not benefit from QLM’s database
integration.

Engine version: Specify the version of the QLM Engine to use. If your application has
shipped with an earlier version of QLM, select the version of the QLM Engine that your
application is using. Note that the latest version of the QLM Engine is 5.0.00.

Permanent License: Check this option if you want the generated license keys to remain in
effect permanently once issued.

Expiry Criteria: Check this option for trial or subscription based licenses that should expire
within a certain number of days of installation, or upon a predetermined date.

Features: Check the boxes next to the features that you want this license to enable. The list
of available features can be configured in the Define Products tab.

License Type: This dropdown selects which of the four available QLM license types will be
generated. The “Bound to Computer Name” and “User Defined” types both request
additional information in the Computer Identifier field.

When you have completed your license settings, click the Generate license keys button in
the ribbon strip. The key, or set of keys, you have requested appears in the License Keys
box. Click the copy button to the right of the box to transfer the information to the Windows
Clipboard. The final destination – a customer email, a configuration page on-line, or
elsewhere – is up to you.

Page 51

Validate Keys

The Validate Keys area of the QLM Console allows you to interactively test a key to
determine whether it is valid.

To validate To validate a license key, paste it into the License Key text field and click
Validate a license key.

 If the license is valid, the information contained in the key is decrypted and displayed in the
form.

IMPORTANT: For computer bound license keys, you need to enter the Computer
Identifier field prior to validating the license. QLM cannot validate a computer bound license
key without the Computer Identifier.

Page 52

About

This tab displays licensing information about your QLM copy.

ACTIVATE LICENSE

When you purchase QLM, you receive an email with a license key that typically starts with the letter 'A'.
To activate your purchased copy of QLM:

 Click the License Wizard button
 Click Activate your license
 Click Activate Online
 Enter your Activation key then click Activate

The activation process connects over the internet to the Soraco QLM License Server and activates your
license. If you connect to the internet via a proxy server, click on the Proxy Settings button to configure
your proxy server.

DEACTIVATE A LICENSE

If you wish to transfer your license to another computer, you can deactivate your license then activate it
on a different system. To deactivate your license:

 Click the License Wizard button
 Click Deactivate your license
 Click Deactivate

Note that you are allowed 4 transfers per year.

CHECK FOR UPDATES

To check if you are running the latest version or to upgrade to the latest version:
 Click the License Wizard button
 The welcome page displays the version you are running and the latest version. If a more recent

version is available, click the "Update to the latest version" link
 Review the Release notes
 Click Download
 When the Download completes, click Install

Page 53

QLM Express License Validation .NET Control
 The QLM Express License Validation .NET Control is a Windows Forms based .NET control that you
can easily add to your Windows Forms application to capture and validate a license key.
The control can be found in the Visual Studio toolbox, in the Quick License Manager section.
To integrate QLM Express with your application, you also need the automatically generated helper class.
This class can be generated from the Protect your application
 wizard.
Following is a list of all the properties that can be set on the QLM Express License Validation .NET
Control.
Name Description

QlmCloseButtonVisible Show or hide to Close button

QlmComputerID

Set the computer ID to use when activating the
license. This property should be typically set
programmatically at runtime.

QlmEncryptionKey

Set the encryption key. This property is only
required when using QLM engine version 4.0 and
earlier.

QlmEvaluationHaveKeyRadioButtonText

Only applies if the QlmEvaluationVisible property is
set to true. Set the text in the radio button when the
user has a license key.

QlmEvaluationLicenseKey

Only applies if the QlmEvaluationVisible property is
set to true. Set the evaluation key to use when the
user selects to evaluate the software and does not
have a license key.

QlmEvaluationTrialChecked
Only applies if the QlmEvaluationVisible property is
set to true. Checks the evaluation option by default.

QlmEvaluationTrialHelpText

Only applies if the QlmEvaluationVisible property is
set to true. Set the text to display under the
evaluation radio button.

QlmEvaluationTrialRadioButtonText

Only applies if the QlmEvaluationVisible property is
set to true. Set the text to display on the evaluation
radio button.

QlmEvaluationVisible

Enables the evaluation option. The evaluation
option displays two radio buttons. One radio button
allows the user to enter a license key and activate
the license while the other radio button allows the
user to evaluate the software by using an embedded
evaluation license key.

QlmFormBackColor Set the starting Background Color of the form to

Page 54

produce a gradient effect.

QlmFormBackColor2
Set the ending Background Color of the form to
produce a gradient effect.

QlmGUID

Set the GUID associated to your product. The
GUID can be found on the Define Product page in
the QLM Console.

QlmHeaderBackColor Set the Background Color of the header pane.

QlmLicenseStatus
Get the status of the license after it has been
validated. This is a read-only property.

QlmLicenseType
Set the license type. The license type can be:
ComputerName, UserDefined or Generic.

QlmLogoFont Set the font to use in the logo text.

QlmLogoImage Set the image to use for the logo.

QlmLogoText Set the text to use for the logo.

QlmMajorVersion

Set the Major Version associated to your product.
The Major Version can be found on the Define
Products page in the QLM Console.

QlmMinorVersion

Set the Minor Version associated to your product.
The Minor Version can be found on the Define
Products page in the QLM Console.

QlmProductID

Set the Product ID Version associated to your
product. The Product ID can be found on the
Define Products page in the QLM Console.

QlmProductName Set the Product Name associated to your product.

QlmPublicKey

Set the Public Key associated to your product. The
Public Key Version can be found on the Define
Products page (Keys tab) in the QLM Console.

QlmStoreKeysLocation

By default, QLM stores the license keys in a hidden
file on the end user system. You can also select to
store the license keys in the registry by setting this
property.

QlmValidateCertificate The QLM DLLs are digitally signed by a trusted
certificate authority. In order to ensure that hackers

Page 55

do not replace the QLM DLLs by dummy ones,
QLM can validate that the DLLs are properly
signed.

Page 56

Distribute your application
 The sections below describe the options to include the QLM required DLLs in your application.
Select the most appropriate option based on the type of setup that you use to deploy your application.

 Using the QLM .NET API from VB6 or unmanaged C++
 If you have included a reference to QlmLicenseLib.dll in your VB6, unmanaged C++ or any other non
.NET based application, your setup must perform the following operations:
32 bit applications

 Generate a type library to be refrenced by your code
 %windir%\Microsoft.NET\Framework\v2.0.50727\regasm.exe /tlb

"<fullpath>\QlmLicenseLib.dll"
 Register the QlmLicenseLib.dll as a COM object
 %windir%\Microsoft.NET\Framework\v2.0.50727\regasm.exe /codebase

"<fullpath>\QlmLicenseLib.dll"
 64 bit applications

 Generate a type library to be refrenced by your code
 "%windir%\Microsoft.NET\Framework64\v2.0.50727\regasm.exe" /tlb

"<fullpath>\QlmLicenseLib.dll"
 Register the QlmLicenseLib.dll as a COM object
 "%windir%\Microsoft.NET\Framework64\v2.0.50727\regasm.exe" /codebase

"<fullpath>\QlmLicenseLib.dll"

Page 57

Distribute your application using Merge Modules

 InstallShield and other MSI based installation tools
 If you are using Windows Installer to distribute your application, you can use the merge modules found
in the Quick License Manager redistrib\MergeModules
 folder. When including the merge module, set the destination folder of the merge module to be your
application's installation folder.

Application Type QLM Express - Merge
Modules to include

QLM Professional or
Enterprise - Merge Modules
to include

Windows Forms .NET 2.0 or
higher

Soraco Quick License Manager
5.0 (IsLicense50.msm)
 or (recommended)
 Soraco Quick License Manager
5.0 (IsLicense50.msm)
Soraco Quick License Manager
5.0 for .NET 2.0
(QlmLicense.net2.msm)
Soraco Quick License Manager
User Controls 5.0 for .NET 2.0
(QlmControls.net2.msm)

 Soraco Quick License Manager
5.0 (IsLicense50.msm)
Soraco Quick License Manager
5.0 for .NET 2.0
(QlmLicense.net2.msm)

ASP.NET 2.0 or higher
Excel 2003 or higher
MS-Access 2003 or higher
Outlook Add-in
VB6

Soraco Quick License Manager
5.0 (IsLicense50.com.msm)
 or (recommended)
 Soraco Quick License Manager
5.0 for .NET 2.0
(QlmLicense.net2.emb.msm)/p>

Soraco Quick License Manager
5.0 for .NET 2.0
(QlmLicense.net2.emb.msm)

C++

Soraco Quick License Manager
5.0 (IsLicense50.com.msm)
&
or (recommended)
 Soraco Quick License Manager
5.0 (IsLicense50.msm)/p>
Soraco Quick License Manager
5.0 for .NET 2.0
(QlmLicense.net2.com.msm)

 Soraco Quick License Manager
5.0 (IsLicense50.msm)
Soraco Quick License Manager
5.0 for .NET 2.0
(QlmLicense.net2.com.msm)

 Note that if your application does not target x64 bit platforms, i.e. your application runs as a 32
bit application on 64 bit machines, then you should include the IsLicense50_x86.msm instead of
IsLicense50.msm.
&
The IsLicense50.msm merge module includes 2 files:

 FileName: em>IsLicense50.dll
 Destination Folder: [INSTALLDIR]
 ComponentCode: {CD707E5F-495E-48E5-8360-EAB26AFC186A}
 Shared: No
 COM Extract at Build or Self-Register: No
 Permanent: No
 Architecture: x86

Page 58

 FileName: IsLicense50.dll
 Destination Folder: [INSTALLDIR]
 ComponentCode: {752E6A64-1248-46B5-87E5-8039A54F6288}
 Shared: No
 COM Extract at Build or Self-Register: No
 Permanent: No
 Architecture: x64

 The QlmLicenseLib.net2.msm merge module include several files:
 FileName: QlmLicenseLib.dll
 Destination Folder:[INSTALLDIR]
 ComponentCode: {84A850A3-7CDE-4E23-B31E-58C4C716E54F}
 Shared: No
 COM Extract at Build or Self-Register: No
 Permanent: No
 FileName: QlmLicenseLib.resources.dll for Spanish
 Destination Folder: [INSTALLDIR]es
 ComponentCode: {560F660B-2649-45A9-BB53-D499DE808F34}
 Shared: No
 COM Extract at Build or Self-Register: No
 Permanent: No
 FileName: QlmLicenseLib.resources.dll for French
 Destination Folder: [INSTALLDIR]fr
 ComponentCode: {DC0FB90A-AE8A-4261-A82E-BC18B7DFB4C7}
 Shared: No
 COM Extract at Build or Self-Register: No
 Permanent: No
 FileName: QlmLicenseLib.resources.dll for Italian
 Destination Folder: [INSTALLDIR]it
 ComponentCode: {F040D81F-AC78-4CC9-9BD7-18B4F881F34F}
 Shared: No
 COM Extract at Build or Self-Register: No
 Permanent: No&
 FileName: QlmLicenseLib.resources.dll for German
 Destination Folder: [INSTALLDIR]de
 ComponentCode: {7C02CB03-FB75-4B80-95C9-0F6421E578C1}
 Shared: No
 COM Extract at Build or Self-Register: No
 Permanent: No

Page 59

Distribute your application using a Visual Studio Deployment Project

 Visual Studio .Net Deployment Project
 To add Quick License Manager to your Visual Studio .Net deployment project, follow the steps below:

 Create a deployment project
 Add your project's output in the File System Editor
 This should detect the Quick License Manager dependencies and include the following files:

o IsLicense50.dll - If you are targeting x64 bit systems, you will need to conditionally install the
proper IsLicense50.dll depending on the target platform.

o The x64 bit version of IsLicense50.dll is located in the Redistrib\x64 folder.
o QlmLicenceLib.dll
o QlmControls.dll
o es\QlmLicenseLib.resources.dll
o fr\QlmLicenseLib.resources.dll
o it\QlmLicenseLib.resources.dll
o de\QlmLicenseLib.resources.dll

Application Type QLM Express - Files to
include

QLM Professional or
Enterprise - Files to include

Windows Forms .NET 2.0 or
higher

redistrib\x86\IsLicense50.dll
redistrib\x64\IsLicense50.dll
 or (recommended)
 redistrib\x86\IsLicense50.dll
redistrib\x64\IsLicense50.dll
redistrib\.net2.0\QlmLicenseLib.d
ll
redistrib\.net2.0\QlmControls.dll

 redistrib\x86\IsLicense50.dll
redistrib\x64\IsLicense50.dll
redistrib\.net2.0\QlmLicenseLib.d
ll
redistrib\.net2.0\QlmControls.dll

ASP.NET 2.0 or higher
Excel 2003 or higher
MS-Access 2003 or higher
Outlook Add-in
VB6

redistrib\x86\IsLicense50.dll
redistrib\x64\IsLicense50.dll
 or (recommended)

redistrib\.net2.0\QlmLicenseLibE
mb\QlmLicenseLib.dll
redistrib\.net2.0\QlmControls.dll

redistrib\.net2.0\QlmLicenseLibE
mb\QlmLicenseLib.dll
redistrib\.net2.0\QlmControls.dll

C++

redistrib\x86\IsLicense50.dll
redistrib\x64\IsLicense50.dll
 or (recommended)
 redistrib\x86\IsLicense50.dll
redistrib\x64\IsLicense50.dll
redistrib\.net2.0\QlmLicenseLib.d
ll
redistrib\.net2.0\QlmControls.dll

 redistrib\x86\IsLicense50.dll
redistrib\x64\IsLicense50.dll
redistrib\.net2.0\QlmLicenseLib.d
ll
redistrib\.net2.0\QlmControls.dll

Page 60

Distribute the QLM DLLs with your application
Some or all of the following files must be included in the setup of your application. To determine which
files to include in your setup, check the table later in this section. All QLM binaries should be installed in
the same folder as your application.
When you include the IsLicense50.dll, you must create two folders, x86 and x64, then copy the
corresponding IsLicense50.dll in each folder.
Note that all .NET DLLs come in two versions: a .NET 2.0 version and a .NET 4.0 version. You can
find all QLM DLLs in the redistrib folder:

x86\IsLicense50.dll: not shared, to be installed in the same folder as your application.
 x64\IsLicense50.dll: not shared, to be installed in the same folder as your application
QlmLicenseLib.dll: not shared, to be installed in the same folder as your application
QlmControls.dll: not shared, to be installed in the same folder as your application
QlmControlLicenseWizard.dll: not shared, to be installed in the same folder as your
application
QlmLicenseWizard.exe: not shared, to be installed in the same folder as your application

To determine what DLLs to include in your application, refer to the table below.

Application Type QLM Express - Files to
include

QLM Professional or
Enterprise - Files to include

Windows Forms .NET 2.0 or
higher

redistrib\x86\IsLicense50.dll
redistrib\x64\IsLicense50.dll
 or (recommended)
 redistrib\x86\IsLicense50.dll
redistrib\x64\IsLicense50.dll
redistrib\.net2.0\QlmLicenseLib.d
ll
redistrib\.net2.0\QlmControls.dll
redistrib\.net2.0\QlmControlLice
nseWizard.dll

 redistrib\x86\IsLicense50.dll
redistrib\x64\IsLicense50.dll
redistrib\.net2.0\QlmLicenseLib.d
ll
redistrib\.net2.0\QlmControls.dll
redistrib\.net2.0\QlmControlLice
nseWizard.dll

ASP.NET 2.0 or higher
Outlook Add-in

redistrib\x86\IsLicense50.dll
redistrib\x64\IsLicense50.dll
 or (recommended)

redistrib\.net2.0\QlmLicenseLibE
mb\QlmLicenseLib.dll
redistrib\.net2.0\QlmLicenseWiza
rd.exe

redistrib\.net2.0\QlmLicenseLibE
mb\QlmLicenseLib.dll
redistrib\.net2.0\QlmLicenseWiza
rd.exe

Excel 2003 or higher
MS-Access 2003 or higher
VB6
Delphi
Any language that interfaces with
COM/ActiveX

redistrib\x86\IsLicense50.dll
redistrib\x64\IsLicense50.dll
 or (recommended)

redistrib\.net2.0\QlmLicenseLib.d
ll
redistrib\.net2.0\QlmLicenseWiza
rd.exe

redistrib\.net2.0\QlmLicenseLib.d
ll
redistrib\.net2.0\QlmLicenseWiza
rd.exe

C++
redistrib\x86\IsLicense50.dll
redistrib\x64\IsLicense50.dll
 or (recommended)

 redistrib\x86\IsLicense50.dll
redistrib\x64\IsLicense50.dll
redistrib\.net2.0\QlmLicenseLib.d

Page 61

 redistrib\x86\IsLicense50.dll
redistrib\x64\IsLicense50.dll
redistrib\.net2.0\QlmLicenseLib.d
ll
redistrib\.net2.0\QlmControls.dll

ll
redistrib\.net2.0\QlmControls.dll

Page 62

Localization
 The QLM .NET API calls may return messages relating the status of a license key validation. By default,
all messages returned by the QLM .NET API are in English. The QLM .NET API also supports many
languages such as Spanish, Italian and German messages. To configure your application to display the
proper message depending on the language of your customer's system, you need to:

 Locate the localization folders in the Quick License Manager "redistrib\Localization"" folder.
 When you deploy your application, copy these folders to the same location as the

QlmLicenseLib.dll
 For example, if your customer's system is running Spanish OS, copying the "es"" folder will result

in the Spanish resources to be automatically used.
Alternatively, if you would like to force a specific language, you need to add the following call to your
application prior to initializing any UI:
System.Threading.Thread.CurrentThread.CurrentUICulture = new
System.Globalization.CultureInfo("es-ES");
Additionally, the QLM .NET Controls as well as the QLM License Wizard are localized. The
QlmControl.resources.dll contains the localized resources for the QlmControls.dll whereas
QlmLicenseWizard.resources.dll contains the localized resources for the QLM License Wizard.

Page 63

64 bit Support
 When distributing your application, depending on the QLM features that you are using, you may need to
distribute the following DLLs with your application:

 IsLicense50.dll
 QlmLicenseLib.dll
 QlmControls.dll

IsLicense50.dll
 is a C++ DLL. If you are targeting a 64 bit platform, you need to ship with your application the 64 bit
version of this DLL. The 64 bit version of the DLL is found in the x64 folder. The QlmLicenseLib.dll
and QlmControls.dll are .NET assemblies. The same version of these DLLs will work on 32bit or 64
bit platforms.

If your application is intended to run as 32 bit application on a x64 bit operating system, then you need to
use the 32 bit version of IsLicense50.dll. If you are using the provided merge modules to integrate QLM
into your setup, you should use the IsLicense50_x86.msm or IsLicense_x86.com.msm. These merge
modules install the 32 bit version of the IsLicense50.dll regardless of the target platform.

Page 64

BackwardCompatible
 Set this property to true to allow validation of keys prior to the latest version of the QLM engine.
C++: VARIANT_BOOL BackwardCompatible
C#: bool BackwardCompatible

Page 65

CreateLicenseKey
 Creates a non-computer bound license key. If the ExpiryDate is NULL and the ExpiryDuration is -1,
the license key is a permanent non-evaluation license key.
Prior to calling this function, you must call DefineProduct and set the PrivateKey property. Note that
including the PrivateKey in your code is not recommended. Creation of license keys should not typically
be done from within the application but rather from a server that the user does not have access to.
C++: _bstr_t CreateLicenseKey (DATE ExpiryDate, int ExpiryDuration)
C#: string CreateLicenseKey (System.DateTime ExpiryDate, int ExpiryDuration)
Parameters

 ExpiryDate - The date when the license will expire. Use NULL if you do not want to specify an
expiry date.
ExpiryDuration - The duration of the evaluation period in days. Use -1 if you do not want to
specify a duration.
Return
 A non-computer bound license key.

Page 66

CreateLicenseKeyEx
 Creates a computer bound license key.
Prior to calling this function, you must call DefineProduct and set the PrivateKey property. Note that
including the PrivateKey in your code is not recommended. Creation of license keys should not typically
be done from within the application but rather from a server that the user does not have access to.
 C++: _bstr_t CreateLicenseKeyEx (ELicenseType LicenseType, BSTR MachineID)
C#: string CreateLicenseKeyEx (ELicenseType LicenseType, string MachineID)
Parameters

 LicenseType - Specify the type of license to generate. See the definition of LicenseType below.
MachineID - A unique identifier for the machine. If you specify a ComputerName as the
LicenseType, this argument must be the Computer Name. If you specify User Defined
as the LicenseType, this argument can be anything you want. When validating the license key in
your code, you will need to provide the same value to the ValidateLicenseEx function.
Return
 A computer bound license key.

Page 67

CreateLicenseKeyEx2
 Creates a computer bound license key that has an expiry date and a number of licenses.
Prior to calling this function, you must call DefineProduct and set the PrivateKey property. Note that
including the PrivateKey in your code is not recommended. Creation of license keys should not typically
be done from within the application but rather from a server that the user does not have access to.
 C++: _bstr_t CreateLicenseKeyEx2 (DATE ExpiryDate, int ExpiryDuration, int NumberOfLicenses,
ELicenseType LicenseType, BSTR MachineID)
C#: string CreateLicenseKeyEx2 (System.DateTime ExpiryDate, int ExpiryDuration, int
NumberOfLicenses, ELicenseType LicenseType, string MachineID)
Parameters

 ExpiryDate - The date when the license will expire. Use NULL if you do not want to specify an
expiry date.
ExpiryDuration - The duration of the evaluation period in days. Use -1 if you do not want to
specify a duration.
NumberOfLicenses - The number of licenses associated with the key. Use 1 if you do not want
to use single activation licensing.
LicenseType - Specify the type of license to generate. See the definition of LicenseType below.
MachineID - A unique identifier for the machine. If you specify a ComputerName as the
LicenseType, this argument must be the Computer Name. If you specify User Defined
as the LicenseType, this argument can be anything you want. When validating the license key in
your code, you will need to provide the same value to the ValidateLicenseEx function. To create
a key that is not computer bound, set this argument to NULL and set the LicenseType to
Generic.
Return
 A computer bound license key.

Page 68

CreateLicenseKeyEx3
 Creates a computer bound license key that has an expiry date, a number of licenses and a specific set of
features that are enabled.
Prior to calling this function, you must call DefineProduct and set the PrivateKey property. Note that
including the PrivateKey in your code is not recommended. Creation of license keys should not typically
be done from within the application but rather from a server that the user does not have access to.
 C++: _bstr_t CreateLicenseKeyEx3 (DATE expiryDate, int expiryDuration, int numberOfLicenses,
ELicenseType licenseType, BSTR machineID, in features)
C#: string CreateLicenseKeyEx3 (System.DateTime expiryDate, int expiryDuration, int
numberOfLicenses, ELicenseType licenseType, string machineID, int features)
Parameters

 ExpiryDate - The date when the license will expire. Use NULL if you do not want to specify an
expiry date.
ExpiryDuration - The duration of the evaluation period in days. Use -1 if you do not want to
specify a duration.
NumberOfLicenses - The number of licenses associated with the key. Use 1 if you do not want
to use single activation licensing.
LicenseType - Specify the type of license to generate. See the definition of LicenseType below.
MachineID - A unique identifier for the machine. If you specify a ComputerName as the
LicenseType, this argument must be the Computer Name. If you specify User Defined
as the LicenseType, this argument can be anything you want. When validating the license key in
your code, you will need to provide the same value to the ValidateLicenseEx function. To create
a key that is not computer bound, set this argument to NULL and set the LicenseType to
Generic.
Features - A value specifying the features that should be enabled in the created key. Each feature
has a unique ID associated to it. To combine features, perform a bitwise OR operation on the
required features.
Return
 A computer bound license key.

Page 69

CreateLicenseKeyEx4
 Creates a computer bound license key that has an expiry date, a number of licenses and a specific set of
features that are enabled.
Prior to calling this function, you must call DefineProduct and set the PrivateKey property. Note that
including the PrivateKey in your code is not recommended. Creation of license keys should not typically
be done from within the application but rather from a server that the user does not have access to.
 C++: _bstr_t CreateLicenseKeyEx4 (DATE expiryDate, int expiryDuration, int numberOfLicenses,
ELicenseType licenseType, BSTR machineID, int[] features)
C#: string CreateLicenseKeyEx4 (System.DateTime expiryDate, int expiryDuration, int
numberOfLicenses, ELicenseType licenseType, string machineID, SAFEARRAY *Features)
Parameters

 ExpiryDate - The date when the license will expire. Use NULL if you do not want to specify an
expiry date.
ExpiryDuration - The duration of the evaluation period in days. Use -1 if you do not want to
specify a duration.
NumberOfLicenses - The number of licenses associated with the key. Use 1 if you do not want
to use single activation licensing.
LicenseType - Specify the type of license to generate. See the definition of LicenseType below.
MachineID - A unique identifier for the machine. If you specify a ComputerName as the
LicenseType, this argument must be the Computer Name. If you specify User Defined
as the LicenseType, this argument can be anything you want. When validating the license key in
your code, you will need to provide the same value to the ValidateLicenseEx function. To create
a key that is not computer bound, set this argument to NULL and set the LicenseType to
Generic.
Features - An array of feature sets. Each feature set is a value specifying the features that should
be enabled in the created key. The value of the feature set is the or'ed value of all the features to
be enabled in the set. To combine features, perform a bitwise OR operation on the required
features.
Return
 A computer bound license key.

Page 70

CreateLicenseKeyEx5
 Creates a computer bound license key that has an expiry date, a number of licenses and a specific set of
features that are enabled. This API is functionally identical to CreateLicenseKeyEx4. It was created to
accomodate programming languages such as VB6 that cannot handle the array data type used in
CreateLicenseKeyEx4.
Prior to calling this function, you must call DefineProduct and set the PrivateKey property. Note that
including the PrivateKey in your code is not recommended. Creation of license keys should not typically
be done from within the application but rather from a server that the user does not have access to.
 C++: _bstr_t CreateLicenseKeyEx5 (DATE expiryDate, int expiryDuration, int numberOfLicenses,
ELicenseType licenseType, BSTR machineID, BSTR features)
C#: string CreateLicenseKeyEx5 (System.DateTime expiryDate, int expiryDuration, int
numberOfLicenses, ELicenseType licenseType, string machineID, string Features)
Parameters

 ExpiryDate - The date when the license will expire. Use NULL if you do not want to specify an
expiry date.
ExpiryDuration - The duration of the evaluation period in days. Use -1 if you do not want to
specify a duration.
NumberOfLicenses - The number of licenses associated with the key. Use 1 if you do not want
to use single activation licensing.
LicenseType - Specify the type of license to generate. See the definition of LicenseType below.
MachineID - A unique identifier for the machine. If you specify a ComputerName as the
LicenseType, this argument must be the Computer Name. If you specify User Defined
as the LicenseType, this argument can be anything you want. When validating the license key in
your code, you will need to provide the same value to the ValidateLicenseEx function. To create
a key that is not computer bound, set this argument to NULL and set the LicenseType to
Generic.
Features - A set of features to be enabled using the following syntax:

<featureSet>:<featureValue>;<featureSet>:<featureValue>
Example: "0:8;1:2;3:14" - Enables: feature id 8 in feature set 0, feature id 2 in feature set 1
and feature ids 2, 4, 8 (2 + 4 + 8 = 14) in feature set 3.
To combine features, perform a bitwise OR operation on the required features.

Return
 A computer bound license key.

Page 71

DaysLeft
 Returns the number of days left before the evaluation expires. You must call ValidateLicense prior to
calling this function.
C++: int DaysLeft
C#: int DaysLeft ()
Return

 Number of days left before the evaluation expires.

Page 72

DefineProduct
 The DefineProduct method initializes basic information required to validate license keys. You must call
this function prior to calling any other function.
C++:
 VARIANT_BOOL DefineProduct (int ProductID, BSTR ProductName, int MajorVersion, int
MinorVersion, BSTR EncryptionKey, BSTR PersistenceKey)
C#:
 bool DefineProduct (int ProductID, string ProductName, int MajorVersion, int MinorVersion, string
EncryptionKey, string PersistenceKey)
Parameters

 ProductID
: ID of the product as generated by Quick License Manager
ProductName
: Name of the product
MajorVersion
: Major version of the product (maximum 2 digits)
MinorVersion
: Minor version of the product (maximum 2 digits)
Encryption
 Key: string used to encrypt the license key.
PersistenceKey
: GUID associated with the product and automatically generated by Quick License Manager for
each product. The evaluation information of the product is stored at runtime in the registry under
HKCR\CLSID\<GUID>.

Page 73

Duration
 Returns the duration in days of the evaluation key. You must call ValidateLicense prior to calling this
function.
C++: int Duration
C#: int Duration ()
Return

 Duration of the evaluation key.

Page 74

ELicenseStatus
 Enum of all possible values of the license key status. Note that the status can consist of a combination of
these values:
EKeyPermanent : The license key is valid and it is a permanent license key.
EKeyInvalid : The license key is invalid. It was not decoded succesfully.
EKeyDemo : The license key is an evaluation key.
EKeyProductInvalid : The product ID of the license key does not correspond to the expected Product
ID.
EKeyVersionInvalid : The Major or Minor version of the license key does not correspond to the
expected Major or Minor version.
EKeyExpired : The license key has expired.
EKeyTampered
: The license key was tampered typically indicating that the user is attempting to set the date back to run
the software.
EKeyMachineInvalid
: If you are using computer bound license keys, an EKeyMachineInvalid status indicates that the license
key that was validated does not match the computer to which the license key was bound.
EKeyNeedsActivation
: This flag indicates that the license key is an activation key. If you detect an activation key, you should
not enable your application. You should just allow the user to activate his license. Once the license is
activated, a computer bound key is issued. Once you detect a valid computer bound key, you can enable
your application.

Page 75

ELicenseType
 Enum of all possible types of license keys.
Activation : The license key is a key that requires activation.
Evaluation (obsolete) : The license key is an evaluation key.
ComputerName : The license key is bound to the name of the computer.
Generic (previously PermanentGeneric) : The license key is permanent and not bound to a computer.
UserDefined
: The license key is bound to the computer based on a user defined unique identifier.

Page 76

EvaluationPerUser
 Set this property to true to store evaluation information per user. The default value is true. If set to false,
evaluation information is stored at the machine level. Note that you need to make sure the current user
has the required privileges to store evaluation information at the machine level under
HKEY_LOCAL_MACHINE\Software\Classes\CLSID\<GUID>.

Evaluation information consists of the installation date of your software as well as the last time your
software ran.
C++: VARIANT_BOOL EvaluationPerUser
C#: bool EvaluationPerUser

Page 77

ExpiryDate
 Returns the expiry date of the evaluation key. You must call ValidateLicense prior to calling this
function.
C++: DATE ExpiryDate
C#: System.DateTime ExpiryDate()
Return

 Expiry date of the evaluation key.

Page 78

Features
 Returns an array of all the feature sets associated with the license key. Within a feature set (each element
of the array), if several features are associated to a license key, the returned value is a bitwise OR of
these features.

 This function must be called after a call to ValidateLicense or ValidateLicenseEx.
C++: int *Features
C#:/STRONG> int [] Features

Page 79

GetStatus
 Returns the last status. See ELicenseStatus for possible values.

You must always call this function after calling ValidateLicense or ValidateLicenseEx to get the result of
the validation.
C++: int GetStatus
C#: int GetStatus ()
Return

 Last status

Page 80

IsEvaluation
 Returns whether the current license key is an evaluation key. You must call ValidateLicense prior to
calling IsEvaluation.
C++: VARIANT_BOOL IsEvaluation
C#: bool IsEvaluation ()
Return

 Boolean indicating if the license key is an evaluation key.

Page 81

IsFeatureEnabled
 Returns whether the specified feature is enabled in this license key. This function is now obsolete and has
been superseded by IsFeatureEnabledEx.

You must call ValidateLicense prior to calling IsFeatureEnabled. C++: VARIANT_BOOL
IsFeatureEnabled (int feature)
C#: bool IsFeatureEnabled (int feature)
Parameters

 feature - id of feature to be checked.
Return

 Boolean indicating if the featured is enabled.

Page 82

IsFeatureEnabledEx
 Returns whether the specified feature is enabled in this license key. You must call ValidateLicense prior
to calling IsFeatureEnabled.
C++: VARIANT_BOOL IsFeatureEnabled (int featureSet, int feature)
C#: bool IsFeatureEnabledEx (int featureSet, int feature)
Parameters

 featureSet - id of the feature set. QLM supports four feature sets (0 to 3).
feature - id of feature to be checked.

Return
 Boolean indicating if the featured is enabled.

Page 83

IsValid
 Returns whether the current license key is a valid key. A valid license key is a key that was decoded
properly and is either permanent or evaluation. You must call ValidateLicense prior to calling IsValid.
C++: VARIANT_BOOL IsValid
C#: bool IsValid ()
Return

 Boolean indicating if the license key is a valid key.

Page 84

LicenseType
 Returns the license type of the key. See ELicenseType for possible values.
C++: ELicenseType LicenseType
C#: ELicenseType LicenseType ()
Return

 License type

Page 85

NumberOfLicenses
 Returns the number of multiple activations enabled for the license key.
C++: int NumberOfLicenses
C#: int NumberOfLicenses;
Return

 Number Of LNumber Of Licenses

Page 86

MajorVersion
 Returns the major version associated to the license key. You must call ValidateLicense prior to calling
this function.
C++: int MajorVersion
C#: int MajorVersion
Return

 Major version of the product.

Page 87

MinorVersion
 Returns the minor version associated to the license key. You must call ValidateLicense prior to calling
this function.
C++: int MinorVersion
C#: int MinorVersion
Return

 Minor version of the product.

Page 88

PrivateKey
 QLM version 5 implements asymmetric encryption to encrypt the license key. Asymmetric enryption is
safer because one key encrypts the license, the private key, and another key, the public key, decrypts
that information. Therefore, you only need to include the public key in your source code.
This function sets the private key associated with your product. The private key should be set before you
create a license, typically right after the call to DefineProduct. If you are creating a license key with a
QLM engine version prior to version 5, you do not need to set the private key. It is highly recommended
that you do not set the private key in your code.
The private key of your product can be found on the DefineProduct screen under the Keys tab in the
QLM Console.
C++: _bstr_t privateKey
C#: string PrivateKey

Page 89

PublicKey
 QLM version 5 implements asymmetric encryption to encrypt the license key. Asymmetric enryption is
safer because one key encrypts the license, the private key, and another key, the public key, decrypts
that information. Therefore, you only need to include the public key in your source code.
This function sets the public key associated with your product. The public key should be set before you
validate a license, typically right after the call to DefineProduct. If you are validating a license key with a
QLM engine version prior to version 5, you do not need to set the public key.
The public key of your product can be found on the DefineProduct screen under the Keys tab in the
QLM Console.
C++: _bstr_t publicKey
C#: string PublicKey

Page 90

ProductID
 Returns the product ID associated to the license key. You must call ValidateLicense prior to calling this
function.
C++: ibt ProductID
C#: int ProductID ()
Return

 Product ID associated to the license key.

Page 91

ValidateLicense
 Validates a license key. You must call DefineProduct prior to calling this function.
After calling this function, call GetStatus to get the status of the call.
C++: _bstr_t ValidateLicense (BSTR LicenseKey);
C#: string ValidateLicense (string LicenseKey)
Parameters

 LicenseKey
: License Key to validate

Return
 Error message if ValidateLicense fails to validate or if the license is an evaluation license.

Page 92

ValidateLicenseEx
 Validates a computer bound license key. You can call this function for any type of license key. If the
license key is not computer bound, set the ComputerID to an empty string. You must call DefineProduct
prior to calling this function.
After calling this function, call GetStatus to get the status of the call.
C++: _bstr_t ValidateLicenseEx (BSTR LicenseKey, BSTR ComputerID);
C#: string ValidateLicenseEx (string LicenseKey, string ComputerID)
Parameters

 LicenseKey
: License Key to validate
ComputerID
: A string identifying the computer.

Return
 Error message if ValidateLicenseEx fails to validate or if the license is an evaluation license.

Page 93

ValidateLicenseEx2
 Validates a computer bound license key. You can call this function for any type of license key. If the
license key is not computer bound, set the ComputerID to an empty string. You must call DefineProduct
prior to calling this function.
After calling this function, call GetStatus to get the status of the call.
C#: string ValidateLicenseEx2 (string licenseKey, string computerID, bool skipWrites, bool
skipExpiryValidation)
Parameters

 LicenseKey
: License Key to validate
computerID
: A string identifying the computer.
skipWrites
: Do not write any data on the end user system. Should be set to false in most cases.
skipExpiryValidation
:Do not check for expiry of the license. Should be set to false in most cases.

Return
 Error message if ValidateLicenseEx2 fails to validate or if the license is an evaluation license.

Page 94

ValidateLicenseEx3
 Validates a computer bound license key. You can call this function for any type of license key. If the
license key is not computer bound, set the LicenseBinding to None. You must call DefineProduct prior to
calling this function.
After calling this function, call GetStatus to get the status of the call.
C#: string ValidateLicenseEx3 (string LicenseKey, ELicenseBinding licenseBinding, bool skipWrites,
bool skipExpiryValidation)
Parameters

 LicenseKey
: License Key to validate
licenseBinding
: License Binding Type
skipWrites
: Do not write any data on the end user system. Should be set to false in most cases.
skipExpiryValidation
:Do not check for expiry of the license. Should be set to false in most cases.

Return
 Error message if ValidateLicenseEx3 fails to validate or if the license is an evaluation license.

Page 95

ValidateFile
 Validates that the Quick License Manager DLL is authentic and was not tampered with. In order to
prevent hackers from replacing the IsLicense50.dll with their own version, you can validate the
authenticity of the DLL by calling the ValidateFile function. The ValidateFile function returns a fingerprint
(long number) that is the result of a checksum of the DLL contents combined with your own key. Use the
QlmFingerPrint.exe to generate this unique fingerprint and validate in your code that the runtime
fingerprint matches the generated one.
If you are using QLM Professional, you do not need to call this function. Instead, set the validateIntegrity
argument to true when constructing the QlmLicense object.
C++: long ValidateFile (BSTR LicenseDLL, BSTR Key);
C#: ulong ValidateFile(string LicenseDLL, BSTR Key)
Parameters

 LicenseDLL
: Full path to the License DLL. If this argument is NULL, the currently loaded License DLL is
used.
Key
: A unique key of your choice that is used to uniquely encrypt the fingerprint.

Return
 FingerPrint- A long umber that uniquely identifies your license DLL.

Page 96

Version
 Returns the version of the QLM engine used to create the key. You must call ValidateLicense prior to
calling this function.
C++: _bstr_t Version
C#: string Version
Return

 Version of QLM Engine used to create the license key.

Page 97

Quick License Manager Professional Overview
 Quick License Manager Professional provides the tools required to implement online software
activation. QLM Professional is composed of 3 components:

 A License Server / database that exposes an interface for issuing and managing license keys
 A Windows client application (QLM Management Console) that communicates with the License

Server and allows you to manage license keys.
 A set of APIs and controls that you can use and integrate in your application.

Software Activation is the process of generating a computer bound license key over the internet. In order
to implement software activation with Quick License Manager, you need to work with 2 types of license
keys.
The first key is called "Activation Key" (ELicenseType.Activation). This is the key that you send to your
customer when they purchase your software. The activation key can be sent to your customer directly
through our integration with leading eCommerce providers
. It can also be sent from the QLM Management Console or by any other means of your choice. This
license key does not enable your software. It simply allows the user to activate his license. If a user
purchases several copies of your software, you can send them one activation key for all purchased
licenses or one activation key per license.
From your application, the user enters the activation key. Your application then calls the QLM API and
sends the activation key along with a with a computer unique identifier to the QLM License Server. The
QLM License Server generates the second type of license key called "Computer Bound Key"
(ELicenseType.UserDefined or ELicenseType.ComputerName) and sends this key back to your
application. The computer bound key enables your application to run.
Note that in your application, you need to have a dialog for the user to enter a license key and activate it.
QLM includes .NET Controls that you simply drop in your application to handle the license activation
part. For non .NET applications, QLM provides the QLM License Wizard
 which is a standalone executable that you can launch from your application.

Page 98

License Server
 The QLM License Server provides an interface to the database that stores all license keys and related
data. The default database that ships with QLM is a MS-Access database. The supported databases are
MS-SQL Server 2000 and higher and MS-Access. See the Configure the Database
 section for more details on installing the database.
The system requirements for the QLM License Server are:

 Windows 2008 server or higher (x86 or x64).
 .NET Framework 4.0
 SQL Server Database or MS-Access
 Full Trust for .NET assemblies.

 The License Server can be installed in 2 ways: (a) by running the provided setup program
QlmLicenseServerSetup.exe
 or (b) by executing the installation steps manually. If you are hosting your own web site or if you are
distributing the QLM License Server as part of your program (requires special distribution rights and a
QLM Enterprise license), then option (a) is recommended. If your site is hosted at an ISP, then you may
need to use option (b).

Automated installation of the License Server
 To install the QLM License Server, locate the QlmLicenseServerSetup.exe setup program in the
QLM installation folder. Typically this file is located under:
%Public%\Public Documents\Quick License Manager\DeployToServer Execute the setup and follow the
onscreen instructions.

Manual installation of the License Server
 To manually install the QLM License Server, locate the QlmLicenseServer
 folder in the QLM installation folder. Typically this folder is located under:
%Public%\Public Documents\Quick License Manager\DeployToServer\QlmLicenseServer

 At your ISP, create a new virtual directory called qlm and enable ASP.NET 4.0 for this virtual
directory.

 Create an Application Pool and associate the virtual directory above to the Application Pool.
 Ensure the Application Pool is configured for .NET 4.0
 Upload all the files in the %Public%\Public Documents\Quick License

Manager\DeployToServer\QlmLicenseServer folder and subfolders to the virtual directory
(preserve the directory structure).

Configure the License Server Customize the following settings in the web.config files based on your needs:
 Database connection string. Refer to the Configure the Database section in the Help for

instructions on installing the database.
 Default QLM Engine Version (defaultQlmVersion).
 SQL Syntax(sqlsyntax).
 Communication Encryption Key (communicationEncryptionKey). The communication encryption

key is used to encrypt data transferred between QLM and the QLM License Server. This key is
like a password that protects your data.

 Admin Encryption Key (adminEncryptionKey). The admin encryption key is used to encrypt
data transferred between QLM and the QLM License Server. This key is like a password that
protects your data.

Security Note:
 You need to give the anonymous user (IUSR_XXX, IWAM_XXX) execute privileges to the

bin folder.

Page 99

Recommendations
 Change the default Communication and Admin Encryption Keys. If you do not, any other QLM

customer may be able to view your data.

Page 100

Configuring the Database
 QLM Professional stores all issued license keys as well as customer related information in a database on
the web server. The default database that ships with QLM is a MS-Access database. However, you can
use any database that implements an OleDbProvider.

Database Installation
 If you installed the QLM License Server using the provided setup program, the database is created
automatically during the setup.
However, if you manually installed the QLM License Server, you will need to create the database
manually as well as follows:

 If you want to use the MS-Access Database, copy the qlm.accdb file from %Public%\Public
Documents\Quick License Manager\DeployToServer\QlmLicenseServer\Db to the location
recommended by your ISP and update the web.config file accordingly. Note that the web.config
must contain the appropriate local path to the qlm.accdb file.

 If you want to use an SQL Server database, use the tools provided by your ISP to create a
database called Qlm (or any other name of your choice) or execute the sql200x.createdb.sql.

 Execute the provided database creation script sql200x.createtables.sql.
 Execute the provided database creation script sql200x.createusers.sql.
 Update the web.config file to point to the SQL database (see comments in web.config and

section below).

Configure QLM to use a SQL Server Database
 To use a database engine other than MS-Access, you need to update the connectionString and the sql
Syntax settings in the web.config file that is included with the License Server as follows:
For all SQL Server editions, locate the sqlSyntax setting in the web.config and set it as follows:

<setting name="sqlSyntax" serializeAs="String">
<value>sql</value>
</settings>

For the connectionStrings, locate in the web.config a commented connectionString section that
corresponds to the type of database you are using. Uncomment the section and update the
connectionString settings accordingly.

Recommendations
 Backup your database on a daily basis.

Page 101

QLM and Windows Azure Integration
 You can host the QLM License Server on a Windows Azure portal. The procedure outlined in this
section will show you how to build a QLM Azure deployment package, how to create the database on
the Azure Portal and finally how to connect QLM to the Azure hosted QLM License Server.

1. Database Creation
 To create the QLM database on the Azure portal:
Go
to
the
Wi
nd
ow
s
Az
ure
Po
rtal
.
Sel
ect
S
Q
L
Da
ta
ba
se
s.
Cli
ck
on
the
Ne
w
but
ton
.
Cli
ck
on
Qu
ick
Cr
ea
te.

Set
the

Page 102

dat
ab
ase
na
me
to:
ql
m
Pic
k
the
ser
ver
of
yo
ur
ch
oic
e
or
cre
ate
a
ne
w
S
Q
L
dat
ab
ase
ser
ver
.
Cli
ck
on
Cr
ea
te
S
Q
L
da
ta
ba
se.

2. Server settings
 If you selected to create a new SQL database server on the previous step, you need to configure a user

Page 103

account on the SQL Server.

Enter qlm as the login name of the
server
Enter a password
Select a region
When done, confirm that you see
the database in the list of available
databases.

3. Configure the database
 Now that the database is created, we need to create the tables and stored procedures. Follow the steps
below:

Page 104

Cli
ck
on
the
Q
L
M
dat
ab
ase
in
the
list
In
the
Co
nn
ect
to
yo
ur
dat
ab
ase
pa
nel
,
clic
k
on
"R
un
Tr
ans
act
-S
Q
L
qu
eri
es
ag
ain
st
yo
ur
S
Q
L
dat

Page 105

ab
ase
.

W
he
n
pr
om
pte
d
to
log
in,
ent
er
yo
ur
S
Q
L
Se
rve
r
cre
de
nti
als.

Page 106

Cli
ck
on
Ne
w
Qu
ery
an
d
pa
ste
the
co
nte
nt
of
the
file:
%
Pu
bli
c%
\D
oc
um
ent
s\
Qu
ick
Lic
ens
e
M
an
ag
er\
De
plo
yT
oA
zur
e\
Db
\ql
m.
cre
ate
tab
les.
sql

Page 107

Cli
ck
on
Ru
n
to
ex
ec
ute
the
qu
ery
Re
pe
at
the
se
tw
o
ste
ps
for
the
foll
ow
ing
file
s,
in
the
ex
act
or
der
list
ed
her
e:
Ins
tall
Co
m
mo
n.s
ql,
Ins
tall
Ro
les.

Page 108

sql
,
Ins
tall
Pe
rso
nali
zati
on.
sql
,
Ins
tall
Pr
ofil
e.s
ql,
Ins
tall
M
em
ber
shi
p.s
ql

4. Creating the QLM package
 To deploy the QLM License Server to Windows Azure, you must create an Azure package by
following the steps oultined below:

La
un
ch
the
Q
L
M
M
an
ag
em
ent
Co
ns
ole
an
d
go
to
the

Page 109

M
an
ag
e
Ke
ys
tab
Cli
ck
on
the
Sit
es
but
ton
in
the
too
lba
r,
the
n
clic
k
on
Ad
d
Ent
er
a
na
me
for
yo
ur
Az
ure
site
,
say
Ql
m
Az
ure
,
an
d
clic
k
O

Page 110

K.
In
the
Pri
ma
ry
Sit
e
fiel
d,
ent
er
(yo
u
ca
n
rep
lac
e
'm
yql
m'
wit
h
an
y
val
ue
of
yo
ur
ch
oic
e):
htt
p://
my
ql
m.
clo
ud
ap
p.n
et/
ql
mli
ce
nse
ser
ver

Page 111

/Ql
mS
erv
ice
.as
mx
If
yo
u
rep
lac
ed
'm
yql
m'
wit
h
an
y
oth
er
val
ue,
not
e
tha
t
yo
u
will
ne
ed
to
use
the
sa
me
val
ue
lat
er
on
in
this
pr
oc
ed
ure
.
Set

Page 112

the
Da
tab
ase
En
gin
e
to:
S
Q
L
Se
rve
r
Cli
ck
on
the
En
cry
pti
on
Ke
ys
tab
,
the
n
clic
k
Ne
w
for
bot
h
fiel
ds
to
ge
ner
ate
a
Co
m
mu
nic
ati
on
En
cry

Page 113

pti
on
Ke
y
an
d
an
Ad
mi
nE
ncr
ypt
ion
Ke
y
Cli
ck
on
the
Da
tab
ase
Co
nn
ect
ion
tab
an
d
ent
er
all
the
fiel
ds
on
this
tab
Se
rve
r
Ho
stn
am
e
or
IP:
to
get
this

Page 114

val
ue,
sel
ect
yo
ur
dat
ab
ase
in
Az
ure
,
an
d
clic
k
on
the
Da
sh
bo
ard
lin
k.
Th
e
SE
R
VE
R
N
A
M
E
fiel
d
is
dis
pla
ye
d
in
the
rig
ht
ha
nd
pa
nel

Page 115

an
d
typ
ical
ly
loo
ks
lik
e:
o5
ad
7d
xk
8e.
dat
ab
ase
.wi
nd
ow
s.n
et
Da
tab
ase
Na
me
:
ql
m
or
an
y
oth
er
na
me
yo
u
ha
ve
ent
ere
d
ear
lier
in
the
pr
oc

Page 116

ess
Us
er
Na
me
:
na
me
of
the
use
r
yo
u
sp
eci
fie
d
ear
lier
in
the
pr
oc
ess
Us
er
Pa
ss
wo
rd:
pa
ss
wo
rd
of
the
use
r
yo
u
sp
eci
fie
d
ear
lier
in
the
pr

Page 117

oc
ess
Cli
ck
on
Up
dat
e
co
nfi
g
file
s
Do
not
clic
k
O
K
--
lea
ve
the
Sit
es
edi
tor
op
en.

Th
e
ne
xt
ste
ps
inv
olv
e
bui
ldi
ng
the
pa
ck
ag
e
usi
ng
Vis

Page 118

ual
Stu
dio
20
12
Op
en
an
d
Bui
ld
the
Ql
m
Az
ure
sol
uti
on
loc
ate
d
in
the
%
Pu
bli
c%
\D
oc
um
ent
s\
Qu
ick
Lic
ens
e
M
an
ag
er\
De
plo
yT
oA
zur
e\
fol
der

Page 119

usi
ng
Vis
ual
Stu
dio
20
12
Rig
ht
mo
use
clic
k
on
the
Ql
m
Az
ure
pr
oje
ct
an
d
sel
ect
"P
ac
ka
ge"
Set
the
Se
rvi
ce
Co
nfi
gur
ati
on
to
Cl
ou
d
an
d
Bui
ld
Co

Page 120

nfi
gur
ati
on
to
Rel
eas
e
the
n
clic
k
on
Pa
ck
ag
e
Th
e
foll
ow
ing
2
file
s
will
be
cre
ate
d
in
the
Ql
m
Az
ure
\Ql
m
Az
ure
\bi
n\
Rel
eas
e\a
pp.
pu
blis
h
fol

Page 121

der
:
Ql
m
Az
ure
.cs
pk
g
an
d
Se
rvi
ce
Co
nfi
gur
ati
on.
Cl
ou
d.c
scf
g
file
s

1. Cloud Service
 Finally, we need to create the Azure Cloud Service and deploy the QLM package to the Azure portal:

Page 122

Go
to
the
Wi
nd
ow
s
Az
ure
Po
rtal
.
Sel
ect
Cl
ou
d
Se
rvi
ce
s.
Cli
ck
on
the
Ne
w
but
ton
.
Cli
ck
on
Qu
ick
Cr
ea
te.

Set
the
U
RL
to
an
y
val
ue
of
yo

Page 123

ur
ch
oic
e
tha
t
ma
tch
es
the
val
ue
yo
u
set
ear
lier
on
Sit
es
pa
ge:
my
ql
m
Set
the
reg
ion
to
an
y
val
ue
of
yo
ur
ch
oic
e.
Cli
ck
on
Cr
ea
te
Cl
ou
d
Se

Page 124

rvi
ce.

On
ce
cre
ate
d,
clic
k
on
the
ser
vic
e
an
d
sel
ect
Up
loa
d a
ne
w
pr
od
uct
ion
de
plo
ym
en
t.
In
the
De
plo
ym
ent
lab
el
fiel
d,
ent
er:
Q
L
M

In
the

Page 125

Pa
ck
ag
e
fiel
d,
clic
k
Fr
om
Lo
cal
an
d
sel
ect
the
Ql
m
Az
ure
.cs
pk
g
file
cre
ate
d
ear
lier
In
the
Co
nfi
gur
ati
on
fiel
d,
clic
k
Fr
om
Lo
cal
an
d
sel
ect
the

Page 126

Se
rvi
ce.
Co
nfi
gur
ati
on.
Cl
ou
d.c
scf
g
file
cre
ate
d
ear
lier
Ch
ec
k
"D
epl
oy
ev
en
if
on
e
or
mo
re
rol
es
co
nta
in
a
sin
gle
inst
an
ce"
.
Ch
ec
k
"St
art

Page 127

de
plo
ym
ent
".
Cli
ck
on
the
ch
ec
km
ark
at
the
bot
to
m
of
the
pa
ge

On
ce
the
pa
ck
ag
e is
cre
ate
d,
clic
k
on
Da
sh
bo
ard
lin
k
to
vie
w
det
ails
ab
out
the

Page 128

pa
ck
ag
e.
Ta
ke
not
e
of
the
Sit
e
Ur
l
No
w
go
ba
ck
to
the
Q
L
M
M
an
ag
em
ent
Co
ns
ole
,
M
an
ag
e
Ke
ys
/
Sit
es
wh
ich
yo
u
left
op
en
ear

Page 129

lier
.
On
the
Ge
ner
al
tab
,
set
the
Pri
ma
ry
Sit
e
to:
<si
te
Url
>/
ql
mli
ce
nse
ser
ver
/ql
ms
erv
ice
.as
mx
Cli
ck
the
Te
st
but
ton
ne
xt
to
the
pri
ma
ry
site
U
RL

Page 130

an
d
co
nfir
m
tha
t
all
tes
ts
ha
ve
pa
sse
d.

This completes the configuration of the Azure site.

Page 131

Disaster Recovery
When configuring a License Server site in the QLM Console, you can configure a disaster recovery (DR)
site where your data will be replicated. The DR site can take over processing requests should the primary
site fail. To configure a DR site, you must:
- Install the QLM License Server on the DR server
- Install the QLM database on the DR server
- Edit the License Server profile in the QLM Console and add a URL to the QLM DR Site.
- Setup a backup job in QLM to backup the database on a daily basis (or as often as required). To
setup a backup job, click on the Backup tab then click on "Create Backup".
- Configure the backup job to automatically restore data to the DR site when the backup is completed.
This is done by checking the AutoRestore checkbox when configuring the backup.
Once the above steps are completed, all keys stored on the primary site will be restored to the DR site
after the backup completes.

QLM License Server redirection for your application
 QLM also supports redirection of the QLM License Server to a disaster recovery site in your
application. This will allow your customers to successfully contact the DR site when the primary site is
down.

Your application's failover
Failover to a disaster recovery site is controlled via an XML file that you place on your server. A sample
XML file is located in the QLM installation folder and is called qlmredirect.xml. The xml file contains the
URL to the active QLM License Server. If your primary QLM site is down and you want to fail over to
the DR site, you need to change the URL in the qlmredirect.xml to point to your DR site. Note that the
qlmredirect.xml file should never be located at your primary site.
Failover is purposely non-automated. If failover was automatic, small network glitches could trigger a
failover and cause some data to be stored on the primary site and other data on the DR site. QLM does
not support merging data that has been updated on both ends.

Code changes to enable redirection in your application
 In your code, when initializing the QlmLicense object, you must set 2 properties:
- EnableDRSite
- RedirectorUrl
 To enable redirection, set EnableDRSite to true. To specify the URL to the qlmredirect.xml file, set the
RedirectorUrl to the URL that points to this file.
For example:
QlmLicense license = new QlmLicense ();
license.DefineProduct (...);
license.EnableDRSite = true;
license.RedirectorUrl = "httlp://soraco.co/qlmredirect.xml";
Note that after failing to a DR site, new data will be written to the DR site. When you primary site is
online again, you may want to replicate all the data on the DR site to the Primary Site. This can be done
from the Backup / Restore tab. Note that QLM does not merge data when restoring. All data is
overwritten from the backup. Exercice extreme caution when performing restores. It is highly
recommended that you perform your own database backup before restoring data to the QLM database.

Page 132

Multiple Activations Keys
 When customers purchase several copies of your product, there are two ways you can send them their
license keys.
1. You can send them one license key for each purchased copy. For example, if a customer purchases 5
copies of your software, you will send them 5 license keys. This approach is inconvenient both for the
seller who has to manage multiple keys per customer and the buyer who has to associate a key per
computer.
2. You can send them one license key that can be activated on 5 computers. This approach is simple
both for the vendor and the seller. This method is referred to in QLM as Multiple Activations Key
.
How To create a license key using Multiple Activations
 From the QLM Console, click on Manage Keys / License Keys / Create. In the Create License dialog,
select the Multiple Activations key check box and specify the number of activations.
If you are using an http request such as GetActivationKey to create activation keys, add the
is_usemultipleactivationskey=true argument to the URL. When integrated with an eCommerce provider,
the number of activations is typically determined based on the number of copies purchased.
Alternatively, you can add the is_quantity argument in the URL request.
When a license key using Multiple Activations is activated, QLM maintains the activation information in a
separate table called ActivationLog.
To view the activated licenses, start QLM, click on Manage Keys, run a search to display a set of
records. Licenses that are of type Multiple Activations display a + sign in the License Type field. Click on
the + sign to expand the row and view the activated licenses.
You can perform one of three operations on the multiple activations licenses:
Release Releases an activated license.
Edit Edits an activated license.
Delete Deletes an activated license.

Page 133

Fully Automated Worflow with eCommerce
Provider Integration

Page 134

Partially Automated Worflow with manual
eCommerce Provider Integration

Page 135

Integrate QLM with your application

QLM provides several approaches to protect your
application depending on the platform, programming
language as well as the desired licensing model. The
sections below describe the most common approaches to
protect your application. If your requirements are not
covered in this section, contact our technical support for
professional advice on how to protect your application.

In general, there are 2 steps required to protect your
application:

 The first time the user launches your application,
you need to present the user with a license
registration form so that they can enter a license
key and activate it.

 On subsequent launches of your application, you
read the previously activated license key and
validate it before opening up your application.

Step by Step Procedure to integrate QLM in your
application

 Define a Product in the QLM Management
Console.

 Install the QLM License Server on your server (or
Soraco's server if you are using our hosting
service) and upload your products to the QLM
License Server(skip this step if you are using QLM
Express).

 Configure the QLM Management Console to
connect to the QLM License Server (skip this step
if you are using QLM Express).

 For QLM Pro and Enterprise users, create a
license key from the Manage Keys tab.

 For QLM Express users, create a license key from
the Generate Keys tab.

 Modify your application as described in the
Integrate QLM with your application section

 Make sure to include the following DLLs in your
application: QlmLicenseLib.dll, x86\IsLicense50.dll
and x64\IsLicense50.dll. For more details, review
the redistributables section.

 We also provide several samples in a multitude of
programming languages. To locate the sample that matches
your application, launch the Get Started Wizard and follow
the instructions to locate the proper sample.

Page 136

Integrate QLM with your .NET WinForms
application

For Windows Forms .NET applications, QLM provides 3
.NET Controls that you can easily drop in your application.
These controls are forms that allow the end-user to enter a
license key and activate it.
The 3 .NET controls are:

 QLM Express:
QlmExpressLicenseValidationControl
(QlmControls.dll)

 QLM Pro/Enterprise:
QlmWebBasicActivationControl
(QlmControls.dll)

 QLM Pro/Enterprise: QlmLicenseWizardCtrl
(QlmControlLicenseWizard.dll).

Both QLM Pro/enterprise controls offer very similar
functionality. The main difference between these 2 controls
is that the QlmLicenseWizardCtrl uses a wizard based
graphical user interface. In addition, the
QlmLicenseWizardCtrl can read its properties from 2
external configuration file. These configuration files are
generated by the Protect your application wizard.

The QLM License Wizard Control is also available as a
standalone executable that can run alongside your
application.

When you install QLM on your system, a Quick License
Manager tab is added to your Visual Studio toolbox that
contains the QLM .NET Controls. If for any reason the
Quick License Manager tab was not added to your Visual
Studio toolbox, you can attempt to recreate this section by
clicking on the Refresh button under Options / Enable
Visual Studio Integration. Note that the QLM tab is not
added to the Visual Studio Express edition as this edition
does not support programmatic additions to its toolbox.

For more details about the QLM .NET Controls, refer to
the API Reference.

For WPF applications, you can host the QLM Windows
Forms Controls in WPF as described in this article.

For validating the license key on subsequent launches of
your application, use the Protect your application wizard
to generate a helper class and add this class to your
application. The helper class has a method called

Page 137

http://keyvan.io/host-windows-forms-controls-in-wpf

ValidateLicenseAtStartup. You should call this method
when your application is launched. For more details about
this method, refer to the API reference section.

We also provide several samples in a multitude of
programming languages. To locate the sample that matches
your application, launch the Get Started Wizard and follow
the instructions to locate the proper sample.

Page 138

Online Activation using the QLM .NET Basic Activation Control
 QLM provides a control that can be dropped in your application to simplify the process of online
activation. When using the control, there is almost no need to write any code to implement online
activation.
The control is available for applications developed using Microsoft .NET 2.0 or later.
A sample program can be found in the following folder: C:\Users\Public\Documents\Quick License
Manager\Samples\qlmpro\Windows\DotNet\C#\QlmControlSample.
To use the QLM .NET Control:

 Create a form in your application.

 Locate the QLM .NET Controls in the Visual Studio toolbox.

 Drag the QLMWebBasicActivationControl and drop it onto your form.

 Add a reference to QlmLicenseLib.dll.

 In your Visual Studio project, create two new folders: x86 and x64.

 In the x86 folder, click Add Existing Item and select redistrib\x86\IsLicense50.dll then set the

"Copy To Output" property to "Copy If Newer".

 In the x64 folder, click Add Existing Item and select redistrib\x64\IsLicense50.dll then set the

"Copy To Output" property to "Copy If Newer".

 Locate all the QLM properties (prefixed with Qlm) and update the properties as needed. The

properties that must be updated to protect your product are: QlmProductID, QlmMajorVersion,
QlmMinorVersion, QlmCommunicationEncryptionKey, QlmPublicKey and
QlmWebServiceUrl.

The QlmWebBasicActivationControl also exposes 2 events:

 QlmClose is triggered when the Close button is clicked

 QlmActivate is triggered when the Activate button is clicked

For more details about all the properties exposed by the .NET Control, review the .NET Control
Reference section in the Help.
In addition to integrating the control, you need to modify your application to validate a license key at
startup. Once the user has activated his license, the control stores the license key in a hidden location on
the end user system. At startup, you should validate that the stored license key is still valid. Use the QLM
Code Generator to generate the LicenseValidator class. This class has a method called
ValidateLicenseAtStartup which you can call when your application is launched:
LicenseValidator lv = new LicenseValidator ();
if (lv.ValidateLicenseAtStartup(computerID, ref needsActivation, ref returnMsg) == false)
{
// the stored license key is not valid. Display the Qlm Control to allow the user to enter a new key

Page 139

Implement Online Activation using the QLM License Wizard .NET Control
 QLM provides a control that can be dropped in your application to simplify the process of online
activation. When using the control, there is almost no need to write any code to implement online
activation.
The control is available for applications developed using Microsoft .NET 2.0 or later.
A sample program QlmLicenseWizardSample can be found in the samples folder.
To use the QLM License Wizard .NET Control:

 Create a form in your application.

 Locate the QLM .NET Controls in the Visual Studio toolbox.

 Drag the QlmLicenseWizardCtrl and drop it onto your form.

 Add a reference to QlmLicenseLib.dll.

 In your Visual Studio project, create two new folders: x86 and x64.

 In the x86 folder, click Add Existing Item and select redistrib\x86\IsLicense50.dll then set the

"Copy To Output" property to "Copy If Newer".

 In the x64 folder, click Add Existing Item and select redistrib\x64\IsLicense50.dll then set the

"Copy To Output" property to "Copy If Newer".

 Locate all the QLM properties (prefixed with Qlm) and update the properties as needed. The

properties that must be updated to protect your product are:
QlmLicenseProperties.QlmProductID, QlmLicenseProperties.QlmMajorVersion,
QlmLicenseProperties.QlmMinorVersion,
QlmLicenseProperties.QlmCommunicationEncryptionKey,
QlmLicenseProperties.QlmPublicKey QlmLicenseProperties.and QlmWebServiceUrl.

The QlmLicenseWizardCtrl also exposes 3 events:
 QlmClose is triggered when the Close button is clicked
 QlmActivate is triggered when the Activate button is clicked
 QlmCancel is triggered when the Cancel button is clicked

For more details about all the properties exposed by the .NET Control, review the .NET Control
Reference section in the Help.
In addition to integrating the control, you need to modify your application to validate a license key at
startup. Once the user has activated his license, the control stores the license key in a hidden location on
the end user system. At startup, you should validate that the stored license key is still valid. In the QLM
Management Console, click the "Protect Your Application" tab and follow the wizard steps to generate
the LicenseValidator class. This class has a method called ValidateLicenseAtStartup which you can call
when your application is launched:
LicenseValidator lv = new LicenseValidator ();
while (lv.ValidateLicenseAtStartup(computerID, ref needsActivation, ref returnMsg) == false)
{
// the stored license key is not valid. Display the Qlm License Wizard Control to allow the user to enter a
new key
}

Page 140

Online Activation using API calls
 To activate a license key, you invoke the ActivateLicense or ActivateLicenseForUser methods.
ActivateLicense should be called when the activation key is already associated to a user.
ActivateLicenseForUser should be called to activate the license and associate it to the specified user.
Note that to add a user, you can call the AddUser API or call the ActivateLicenseDialog which display a
license registration form that allows the user to register the license.
Example:

QlmLicense lic = new QlmLicense();
lic.CommunicationEncryptionKey = "{B6163D99-F46A-4580-BB42-BF276A507A14}";
lic.DefineProduct(1, "My Product", 1, 1, "encKey",
"{549D9583-7152-41bf-9322-AF0A6DB28223}");
lic.ActivateLicense("http://localhost/qlmservice.asmx", activationKey, computerKey,
computerName, "5.0.00", "my data", out response);

ILicenseInfo licenseInfo = new LicenseInfo();
string message = string.Empty;
if (target.ParseResults(response, ref licenseInfo, out message))
{
Console.WriteLine ("PC key=" + licenseInfo.ComputerKey);
}

If you need to create an activation key from your web site, use the CreateActivationKey method. This
method will create an activation key and store it in the database. Note that prior to calling
CreateActivationKey, you must call the DefineProduct function and set the AdminEncryptionKey
property. In addition, this function can only be called if you update the web.config on the web server as
follows:

<setting name="enableCreateActivationKey" serializeAs="String">
<value<True</value>
</setting>

For security reasons, creating activation keys should always be done from your site and not
integrated in your application.

Example:
QlmLicense lic = new QlmLicense();
lic.CommunicationEncryptionKey = "{B6163D99-F46A-4580-BB42-BF276A507A14}";
lic.DefineProduct(1, "My Product", 1, 1, "encKey",
"{549D9583-7152-41bf-9322-AF0A6DB28223}");
lic.CreateActivationKey("http://localhost/qlmservice.asmx", "john@sm.com",
255, 1, true, "5.0.00", string.Empty, "my data",
out response);

ILicenseInfo licenseInfo = new LicenseInfo();
string message = string.Empty;
if (target.ParseResults(response, ref licenseInfo, out message))
{
Console.WriteLine ("Activation key=" + licenseInfo.ActivationKey);
}

Page 141

How to integrate QLM with your Web Application

There are 2 steps required to protect your application:
 The first time the user launches your application,

you need to present the user with a license
registration form so that they can enter a license
key and activate it.

 On subsequent launches of your application, you
read the previously activated license key and
validate it before opening up your application.

PROTECTING WINDOWS WEB BASED .NET
APPLICATIONS

If you are developing a web based application such as an
ASP.NET app or a SharePoint application, the QLM
.NET controls cannot be used. A sample program is
available that shows how to capture and activate a license
key. The sample is located in the following folder:
%Public%\Documents\Quick License
Manager\Samples\qlmpro\Windows\DotNet\Basic\C#\v
s2008\AspDotNetSample

For validating the license key on subsequent launches of
your application, use the Protect your application wizard
to generate a helper class and add this class to your
application. The helper class has a method called
ValidateLicenseAtStartup. You should call this method
when your application is launched. For more details about
this method, refer to the API reference section.

Page 142

Protect Windows 8 Store Apps
 QLM Pro can protect Windows 8 Store applications with permanent, trial and device bound keys.
A .NET library (source code included) exposes an API that enables you to provide your customers with
an evaluation of your software and then turn it at anytime into a permanent license, or simply extend it for
subscription based applications. The .NET library along with a sample applications are provided in the
following QLM Pro samples folder:

 %Public%\documents\quick license manager\samples\qlmpro\Windows\Win8Store
The sample contains 2 project: Qlm.WindowsStore and Qlm.WindowsStore.Sample
Qlm.WindowsStore
is the library that performs the license validation, activation, decryption, etc. You typically do not need to
change any code in this package. The QlmLicense class in this package is the main class you need to
interfact with. The most common methods of this class are document in the help under "Quick License
Manager Professional / API reference / Mobile Devices API".
Qlm.WindowsStore.Sample
simulates your application. When the application is launched, the application attemps to retrieve a stored
license on the device to validate it. If no key was ever activated, the user is prompted to enter an
Activation Key and activate it.
Use the QLM Pro Application to create an Activation Key from the Manage Keys tab. Note that
activation keys can be created from your server using our API or directly from one of the ecommerce
provider integrated with QLM. For a full list of ecommerce providers integrated with QLM, check the
help or our web site.
Once the user enters the Activation Key, you call the QlmLicense.ActivateLicense method. If activation
is successful, digitally signed license information is stored on the device. QLM uses RSA asymmetric
encryption to store license information on the device. The RSA public/private key pair is automatically
generated by QLM when you define a product in the QLM Application Define Products page. The keys
are displayed on the Encryption Keys tab / Mobile Devices Encryption.
Note that the encrypted data stored on the device is signed on the QLM server using the RSA private
key and verified on the device using the RSA public key.
In the Qlm.WindowsStore application, the RSA public key is stored in a file called QlmPublicKey.xml.
In your own application, it is recommended that you hard code the public key in your code rather than
store it in an external file.
In the event a client does not have an internet connection to activate a license online, you can perform an
offline activation
as described below:

 In the QLM applicatinon, under the Manage Keys tab, locate and select the license to activate.
 Click on the Activate button.
 Fill in the Computer ID field on the Activation tab along with other fields as required.
 Click on the Mobile Device Activation tab.
 Select a location where you would like to store a license file then click Ok.
 Send the generated license file to your customer and ask them to copy it to the folder where your

application expects the license file to be located.

Page 143

Protect Windows Phone Apps
 QLM Pro can protect Windows Phone 7 and Windows Phone 8 applications with permanent, trial and
device bound keys.
A .NET library (source code included) exposes an API that enables you to provide your customers with
an evaluation of your software and then turn it at anytime into a permanent license, or simply extend it for
subscription based applications. The .NET library along with a sample applications are provided in the
following QLM Pro samples folder:

 %Public%\documents\quick license
manager\samples\qlmpro\Windows\WindowsPhone\WinPhone7
 %Public%\documents\quick license
manager\samples\qlmpro\Windows\WindowsPhone\WinPhone8
The sample contains 2 project: Qlm.WPx and Qlm.WPx.Application
Qlm.WPx
is the library that performs the license validation, activation, decryption, etc. You typically do not need to
change any code in this package. The QlmLicense class in this package is the main class you need to
interfact with. The most common methods of this class are document in the help under "Quick License
Manager Professional / API reference / Mobile Devices API".
Qlm.WPx.Application
 simulates your application. When the application is launched, the application attemps to retrieve a stored
license on the device to validate it. If no key was ever activated, the user is prompted to enter an
Activation Key and activate it.
Use the QLM Pro Application to create an Activation Key from the Manage Keys tab. Note that
activation keys can be created from your server using our API or directly from one of the ecommerce
provider integrated with QLM. For a full list of ecommerce providers integrated with QLM, check the
help or our web site.
Once the user enters the Activation Key, you call the QlmLicense.ActivateLicense method. If activation
is successful, digitally signed license information is stored on the device. QLM uses RSA asymmetric
encryption to store license information on the device. The RSA public/private key pair is automatically
generated by QLM when you define a product in the QLM Application Define Products page. The keys
are displayed on the Encryption Keys tab / Mobile Devices Encryption.
Note that the encrypted data stored on the device is signed on the QLM server using the RSA private
key and verified on the device using the RSA public key.
In the Qlm.WPx.Application application, the RSA public key is stored in a file called QlmPublicKey.xml.
In your own application, it is recommended that you hard code the public key in your code rather than
store it in an external file.
In the event a client does not have an internet connection to activate a license online, you can perform an
offline activation
as described below:

 In the QLM applicatinon, under the Manage Keys tab, locate and select the license to activate.
 Click on the Activate button.
 Fill in the Computer ID field on the Activation tab along with other fields as required.
 Click on the Mobile Device Activation tab.
 Select a location where you would like to store a license file then click Ok.
 Send the generated license file to your customer and ask them to copy it to the folder where your

application expects the license file to be located.

Page 144

How to integrate QLM with your non .NET Windows
application

For non .NET applications, you have 2 options to catpure
and activate a license:

 Use the standalone QlmLicenseWizard.exe
application to capture and activate a license

 Create your own license registration form.

The typical command line interface to launch the QLM
License Wizard is:
QlmLicenseWizard.exe /settings "<path>\settings.xml"
/uiSettings "<path>\uiSettings.xml"

where both xml files referenced above are generated by
the Protect your application wizard.

When the QlmLicenseWizard.exe application exits, you
should once again call ValdiateLicenseAtStartup and
confirm that the license is valid. If it is not, you either exit
your application or launch the QlmLicenseWizard.exe
application again.

For VB, C++ or any other language that supports
interfacing with COM/ActiveX controls, the Protect your
application wizard generates a helper class that you need
to add to your application. The helper class has a method
called ValidateLicenseAtStartup. You should call this
method when your application is launched. If the call to
ValidateLicenseAtStartup fails or returns that activation
is needed, you should then invoke the
QlmLicenseWizard.exe as described earlier.
We also provide several samples in a multitude of
programming languages. To locate the sample that matches
your application, launch the Get Started Wizard and follow
the instructions to locate the proper sample.

Page 145

Online Activation using the QLM License Wizard Standalone Application
 QLM provides a standalone application (QlmLicenseWizard.exe) that you can invoke from your
application to simplify the process of online activation. When using QlmLicenseWizard.exe, there is
almost no need to write any code to implement online activation. This method is ideal for non .NET
applications that cannot use the QLM .NET Control. Samples are provided for C++, MS-Access and
Excel.
The QlmLicenseWizard.exe can be used on any Windows XP and higher system and requires Microsoft
.NET 2.0 or later.
To use the QlmLicenseWizard.exe application:

 From the QLM Console, create a product.
 Go to the Protect your application tab and follow the instructions in the wizard.
 Modify your application as follows:

o When your application is launched, call the ValidateLicenseAtStartup function. This
function is generated by the Protect your application wizard in the LicenseValidator
class.

o If the ValidateLicenseAtStartup function returns false, launch the QlmLicenseWizard.exe with
the /settings argument.

o When the QlmLicenseWizard.exe process exits, call ValidateLicenseAtStartup again until
the license is valid.

Once the user has activated his license from the QlmLicenseWizard process, the license key is
automatically stored in a hidden location on the end user system.
Example:
 LicenseValidator lv = new LicenseValidator ();
while (lv.ValidateLicenseAtStartup(computerID, ref needsActivation, ref returnMsg) == false)
{
 // Launch the QlmLicenseWizard.exe process
 // If the process exit code is 4, break the while loop
}
The command line arguments of QlmLicenseWizard.exe are:
 Argument Meaning

 /settings
Path to the settings file generated by the Protect
your application wizard (enclose the full path in
double quotes).

 /computerID The unique identifier of the current system. If not
argument is provided, the computer name is used.

/activationKey

Optional argument. By default, the activation key is
automatically retrieved from the location associated
with your products by calling the ReadKeys API.
To override this behavior, you can specify the
activationKey on the command line.

/computerKey

Optional argument. By default, the computer key is
automatically retrieved from the location associated
with your products by calling the ReadKeys API.
To override this behavior, you can specify the
activationKey on the command line.

/floating_master Optional argument. Displays the floating license
page when activating the master node.

Page 146

/floating_node Optional argument. Displays the floating license
page when activating a client node.

/appversion
Optional argument. Sets the version of the
application that's launching the wizard. This version
is used in the Check for Updates feature.

/showur Optional argument. Displays the User Registration
page.

 Upon exiting, the QlmLicenseWizard.exe process returns the following exit codes:
 Exit Code Meaning
 0 the license is valid
 1 the license is not valid
 2 the license has expired

 3 usage error in the command line, typically indicating
some missing or invalid arguments

 4 the user canceled the wizard
 10 the user successfully deactivated the license
 11 the user failed to deactivate the license

Page 147

Online Activation using http requests
 To activate a license using an http request, use the following command:
http://yourserver/qlm/qlmservice.asmx/ActivateKey?is_productid=4&is_majorversion=3&is_minorversio
n=0&is_pcid=00-30-BD-92-74-25&is_avkey=A2CC8-0F116-8EA0A-CC2C10
 where is_pcid is the unique identifier for a PC and is_avKey is the value returned from
GetActivationKey.
For details about the arguments, review the Help under Quick License Manager Professional / Http
Methods / GetActivationKey
To invoke GetActivationKey, you need to send an http request as follows:
http://yourserver/qlm/qlmservice.asmx/GetActivationKey?is_productid=1&is_majorversion=1&is
_minorversion=0
 where is_productid, is_majorversion and is_minorversion are the values defined for the required product
in Quick License Manager.

Page 148

http://yourserver/qlm/qlmservice.asmx/ActivateKey?is_productid=4&is_majorversion=3&is_minorversion=0&is_pcid=00-30-BD-92-74-25&is_avkey=A2CC8-0F116-8EA0A-CC2C10
http://yourserver/qlm/qlmservice.asmx/ActivateKey?is_productid=4&is_majorversion=3&is_minorversion=0&is_pcid=00-30-BD-92-74-25&is_avkey=A2CC8-0F116-8EA0A-CC2C10
http://yourserver/qlm/qlmservice.asmx/GetActivationKey?is_productid=1&is_majorversion=1&is_minorversion=0
http://yourserver/qlm/qlmservice.asmx/GetActivationKey?is_productid=1&is_majorversion=1&is_minorversion=0
http://yourserver/qlm/qlmservice.asmx/ActivateKey?is_productid=4&is_majorversion=3&is_minorversio
http://yourserver/qlm/qlmservice.asmx/GetActivationKey?is_productid=1&is_majorversion=1&is

Basic eCommerce Providers
 A basic eCommerce provider is a provider that does not allow calling an external script such as the
QLM License Server during the purchase process. This type of provider typically allows you to upload a
list of license keys that are distributed to buyers upon purchase. In order to integrate with basic
eCommerce providers, follow the steps below:

 Use QLM to generate a set of activation keys that are not bound to any user.
 To create these keys, click on Licenses, and select Create.
 Select your product and the number of license keys to create
 Uncheck the Customer Email checkbox and the Single Activation Key checkbox.
 Specify the Number of Licenses to create
 In the Results dialog, double click on the result.
 Copy the generated keys to the clipboard and paste them in your eCommerce provider's web

site.
In your application, you now need to enter the user information and activate the license key. The QLM
License Wizard includes a User Registration page to capture user information and publish it to the QLM
License Server. To enable the User Registration page, set the QlmShowUserRegistrationPage property
to true when configuring the QLM License Wizard properties in the Protect Your Application wizard.
Alternatively, you may create your own form to capture user information. If you do so, you will need to
call the following functions:

 DefineProduct
 AddUser
 ActivateLicenseForUser

Page 149

Ecommerce Providers
 If you are using an ecommerce provider to sell your software, QLM provides a mechanism for
integrating with your ecommerce provider. The QLM License Server provides a method that can be
invoked from your ecommerce provider as follows:
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>
&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&is_vendor=<vendor>
&is_features=<features>
 where,
<productID> is the 2 digit product identifier
<majorVersion> is the major version of your product
<minorVersion> is the minor version of your product
<vendor> is the name of the ecommerce provider as specified in Manage Keys / 3rd Party Extensions
<features>
 are the features to enable in this key
The following additional arguments can also be specified:
<is_usemultipleactivationskey> if true, a single activation key is return for a multiple license request.
<is_userdata1> user data to associate to the license key
<is_affiliateid> affiliate id to associate to the license key

When the GetActivationKey method is invoked, the License Server issues an activation key based on the
provided url arguments (is_productid, is_majorversion, is_minorversion, is_vendor, is_features).
Since each ecommerce provider uses a different format for its input (the set of fields entered by the
customer on the order form), and expects resutls in their own format, a custom solution is required for
each provider.
Authentication of the call to GetActivationKey is performed by matching the credentials configured in the
QLM / 3rd Party Extensions against the credentials sent by the ecommerce provider as part of the URL
arguments.
Note that most the methods exposed by the License Server cannot be called with a URL except for a
few methods such as GetActivationKey and ActivateKey. The full list of these mehods is documented in
the API reference / License Server Http methods section. All other web methods implement a secure
authentication mechanism that only accepts requests from the QLM Management Console or the QLM
API.
Example:

http://www.mydomain.com/qlm/qlmservice.asmx/GetActivationKey?is_productid=2&is_majorversion=3
&is_minorversion=0&vendor=digibuy&is_features=3

The URL above generates an activation key for ProductID = 2, MajorVersion = 3, MinorVersion = 0.
The returned response is customized for Digibuy (e-commerce provider).
The enabled features are: Feature 1 and Feature 2 (1+2=3).

Page 150

http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&is_vendor=<vendor>&is_features=<features
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&is_vendor=<vendor>&is_features=<features
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&is_vendor=<vendor>&is_features=<features
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&is_vendor=<vendor>&is_features=<features
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&is_vendor=<vendor>&is_features=<features
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&is_vendor=<vendor>&is_features=<features
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&is_vendor=<vendor>&is_features=<features
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&is_vendor=<vendor>&is_features=<features
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&is_vendor=<vendor>&is_features=<features
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&is_vendor=<vendor>&is_features=<features
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=
http://www.mydomain.com/qlm/qlmservice.asmx/GetActivationKey?is_productid=2&is_majorversion=3

Avangate
 If you are using Avangate as an ecommerce provider, QLM integrates seamlessly with Avangate's
ordering system. After completing the steps below, when a customer purchases your product from
Avangate, Avangate will automatically get a license key from the QLM License Server and then update
the QLM database with the license and customer information.
 To have Avangate invoke QLM during an order, do the following in Avangate Control Panel:

 Click on the Setup menu item.

 Click on "Configure electronic delivery settings".

 In the "Add New Code List" panel, enter a List Name, set the List type to "Dynamic" and click

on "Add List".

 Click on the "Debug ..." button next to the URL field.

 In the Debug Url field enter the following value:

o
https://quicklicensemanager.com/solvusoft/qlm/qlmservice.asmx/GetActivationKey?is_vendor=A
vangate&is_productid=1&is_majorversion=1&is_minorversion=0&is_qlmversion=5.0.00;

 o You should update the URL above to point to your server and specify your product ID, major
and minor version.
o Select any product from the list.
o Click on the "Step 3. Debug" button.
o When you get the "Success" message, click on the "Save" button.
o Close the dialog.
o Click on the "Update" button

Finally, in the Assigned products section, add the required product to the "Assigned Products"
list.

 Note that for security reasons, you can also specify a user name / password in the URL above.

For example:
https://quicklicensemanager.com/solvusoft/qlm/qlmservice.asmx/GetActivationKey?is_vendor=avangate
&is_productid=1&is_majorversion=1&is_minorversion=0&is_qlmversion=5.0.00&is_user=john&is_pw
d=12345;

 The same user/password combination must be specified in the QLM Application under Manage Keys /
Commerce Providers for the Avangate entry.

Now that the Electronic delivery list is created, you need to associate it to your product. To do so:
 Click on the Products menu item then select your product.
 Click on the Fulfillment tab.
 Select "Fulfillment made through Avangate delivery (binary keys, activation codes, Backup

Media, product file, DIS)"
 In the Content & methods section, select "Electronic code / key / binary file";
 In the "Activation codes settings" section, select the Code list you created earlier.
 In the "Additional fulfillment information - by email", customize the email template.

Page 151

https://qlm3.net/qlmdemov16/QlmLicenseServer/qlmservice.asmx/GetActivationKey?is_vendor=avangate&is_productid=1&is_majorversion=1&is_minorversion=0&is_qlmversion=5.0.00
https://qlm3.net/qlmdemov16/QlmLicenseServer/qlmservice.asmx/GetActivationKey?is_vendor=avangate&is_productid=1&is_majorversion=1&is_minorversion=0&is_qlmversion=5.0.00
https://qlm3.net/qlmdemov16/QlmLicenseServer/qlmservice.asmx/GetActivationKey?is_vendor=avangate&is_productid=1&is_majorversion=1&is_minorversion=0&is_qlmversion=5.0.00&is_user=john&is_pwd=12345
https://qlm3.net/qlmdemov16/QlmLicenseServer/qlmservice.asmx/GetActivationKey?is_vendor=avangate&is_productid=1&is_majorversion=1&is_minorversion=0&is_qlmversion=5.0.00&is_user=john&is_pwd=12345
https://qlm3.net/qlmdemov16/QlmLicenseServer/qlmservice.asmx/GetActivationKey?is_vendor=avangate&is_productid=1&is_majorversion=1&is_minorversion=0&is_qlmversion=5.0.00&is_user=john&is_pwd=12345

To place a test order:
 Click on the Products menu item then select your product.
 Click on the Information tab.
 Click on "Get buy links for this product"
 Scroll down the page and click on "Place a test order"
 In the "Activation codes settings" section, select the Code list you created earlier.
 In the "Additional fulfillment information - by email", customize the email template.

Page 152

Cleverbridge
 If you are using Cleverbridge as an eCommerce provider, QLM integrates seamlessly with
Cleverbridge's ordering system.

After completing the steps below, when a customer purchases your product from Cleverbridge,
Cleverbridge will automatically get a license key from the QLM License Server service and then update
the QLM database with the license and customer information.
To integrate Cleverbridge with QLM, peform the following in the Cleverbridge Control Panel:

Cleverbridge Setup for Protecting your
product

 In the Cleverbridge Commerce Assistant, go to Products and Delivery then select Key

Generators

 Click "Add Key Generator / Web Key Generator"

 In the Name field, type: QLM Key Generator

 In the Path field, type:

https://qlm3.net/qlmdemov16/QlmLicenseServer/qlmservice.asmx/GetActivationKeyWithExpiry
Date?is_vendor=cleverbridge&is_productid=1&is_majorversion=1&is_minorversion=0&is_qlm
version=5.0.00

 You should update the URL above to point to your server and specify your product ID, major

and minor version.

 Leave the "Authenticate" checkbox unchecked. Note that you can add a user/pwd to the URL

above. See the QLM help for more details.

 In the Interface field, select "Type 1"

 In the Character Encoding field, select "Unicode (UTF-8)"

 Check "Use Romanized contact values

 Uncheck "Call once per purchase"

 Check "Use XML client notification"

 In the XML Schema field, select "Use Current Version"

 Uncheck "Client handles errors"

 Click Save

Page 153

https://qlm3.net/qlmdemov16/QlmLicenseServer/qlmservice.asmx/GetActivationKeyWithExpiryDate?is_vendor=cleverbridge&is_productid=1&is_majorversion=1&is_minorversion=0&is_qlmversion=5.0.00
https://qlm3.net/qlmdemov16/QlmLicenseServer/qlmservice.asmx/GetActivationKeyWithExpiryDate?is_vendor=cleverbridge&is_productid=1&is_majorversion=1&is_minorversion=0&is_qlmversion=5.0.00
https://qlm3.net/qlmdemov16/QlmLicenseServer/qlmservice.asmx/GetActivationKeyWithExpiryDate?is_vendor=cleverbridge&is_productid=1&is_majorversion=1&is_minorversion=0&is_qlmversion=5.0.00

 In the Products section, locate your product and double click it.

 In the Delivery Details section, set the "Delivery type" to "company delivers key"

 In the Web Key Generator field, select "QLM Key Generator"

With the steps above completed, place a test order as follows:

 Click "Tools / Link Generator"

 Set the Destination field to "Checkout process"

 In the Cart Content section, select your product and click on the "Down" key"

 Click Open and select a browser

 Fill in all the required fields and place a test order.

 When the order is completed, a license key will be generated and an email will be sent to the

customer with the license key. Additionally, customer information will be transferred to the QLM
database.

Page 154

Digibuy
 If you are using Digibuy as an ecommerce provider, QLM integrates seamlessly with Digibuy's ordering
system.
 To have Digibuy invoke QLM during an order, do the following in Digibuy Admin Console:

 Select a Product.

 Click on "reg codes".

 Locate the http:// field

 Enter the following URL:

http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>
&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&is_vendor=digibuy
&is_features=<features>
 where

 is_vendor = Digibuy
 is_productid = your product id as defined in QLM
 is_majorversion = your product's major version as defined in QLM
 is minorversion = your product's minor version as defined in QLM
 is_qlmversion = 5.0.00
 is_features = semi comma separated list of feature sets and their corresponding values. Example:

is_features=0:3;1:1. This means that in feature set 0, features 1 + 2 are enabled and in feature set
1, feature 1 is enabled.

 is_user = username defined in Manage Keys / 3rd Party Extensions (optional)
 is_pwd = password defined in Manage Keys / 3rd Party Extensions (optional)

 Additionally, Digibuy provides a mechanism for protecting this request with a password. On the same
page as above, enter a password in the Password
 field.
The password must also be updated in the QlmProviders.xml file located in the bin folder. Edit
QlmProviders.xml using any text editor and udpate the user and password fields.
In the user field, specify your Digibuy user id. In the password field, specify the password entered
above.

<provider
>

<name>Digibuy</name
>
<class>Qlmsvc.Digibuy</class
>
<dll>QlmDigibuy.dll</dll
>
<user
/>
<password
/>
<passwordEncrypted>false</passwordEncrypted
>

 </provider
>

Page 155

http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&vendor=digibuy&is_features=<features
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&vendor=digibuy&is_features=<features
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&vendor=digibuy&is_features=<features
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&vendor=digibuy&is_features=<features
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&vendor=digibuy&is_features=<features
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&vendor=digibuy&is_features=<features
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&vendor=digibuy&is_features=<features
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&vendor=digibuy&is_features=<features
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&vendor=digibuy&is_features=<features
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&vendor=digibuy&is_features=<features
http://
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=

With the steps above completed, place a test order. When the order is placed, the following will occur:

 A new user will be automatically added to the QLM database based on the information collected

during the ordering process.

 An activation key will be created in the QLM database and associated to the user.

 An email will be sent to the customer with the activation key.

Page 156

FastSpring
 If you are using FastSpring as an eCommerce provider, QLM integrates seamlessly with FastSpring's
ordering system.

After completing the steps below, when a customer purchases your product from FastSpring, FastSpring
will automatically get a license key from the QLM License Server and then update the QLM database
with the license and customer information.
To integrate FastSpring with QLM, peform the following in the FastSpring Control Panel:

FastSpring Setup for a Basic Product

 Select your product in the FastSpring Control Panel

 Add a Fulfillment Action:

 On the Licenses tab, select "Remote" and click on Next

 Set the URL to:

https://qlm3.net/qlmdemov16/QlmLicenseServer/qlmservice.asmx/GetActivationKey?is_vendor=
fastspring&is_productid=1&is_majorversion=1&is_minorversion=0&is_qlmversion=5.0.00

 You should update the URL above to point to your server and specify your product ID, major

and minor version.

 Method: HTTP POST

 POST Encoding: UTF-8

 License Name Type: Person Full Name + Email Address

 Output Format: Plain Text, Single-Line License

 Click on Create

 Click on Save

 In the Fulfilment Actions section, click on Add

 Select Email / Web Notification and click Next

 Reuse Options: Reusable On Multiple Products

 Subject : #{orderItem.display} - Order #{order.reference}

 Email Text Contents :

 Dear #{order.customer.fullName},

Page 157

https://qlm3.net/qlmdemov16/QlmLicenseServer/qlmservice.asmx/GetActivationKey?is_vendor=fastspring&is_productid=1&is_majorversion=1&is_minorversion=0&is_qlmversion=5.0.00
https://qlm3.net/qlmdemov16/QlmLicenseServer/qlmservice.asmx/GetActivationKey?is_vendor=fastspring&is_productid=1&is_majorversion=1&is_minorversion=0&is_qlmversion=5.0.00

 Thank you for your purchase of #{orderItem.display}.
 Your Activation Key is: #{orderItem.fulfillment.license.outcome.licenses.list}
 You can download #{orderItem.display} from:
 http://soraco.co/products/qlm/qlmsetup9.exe
 Should you have any questions please contact us at: sales@soraco.co
 Sincerely,
 Soraco Technologies

 You can customize the Email Html and Web tabs as well.

FastSpring Setup for Updating Contact
Information
 To transfer the contact information from FastSpring to QLM, follow the steps below:

 From the FastSpring Control Panel Home page, click on the "Notify" icon in the top toolbar.

 Click on Add Notification Rule.

 Format: HTTP Remote Server Call.

 Type: Order Notification.

 Remote Server URL:

https://qlm3.net/qlmdemov16/QlmLicenseServer/qlmservice.asmx/UpdateUserInformation

 Click on Next

 In the HTTP Parameters section, click on Add Parameter.

 Name: is_avkey

 Value: #{orderItem.fulfillment.license.outcome.licenses.list}

 Click on Add Parameter again.

 Name: is_vendor

 Value: fastspring

 Optionally, add an is_user and is_pwd parameters to enforce authentication. The user and

password can be specified from the QLM Application, under Manager Keys / Commerce
Providers.

With the steps above completed, place a test order by clicking on the FastSpring Control Panel Home
page, then Store Testing. Once your test order is completed, an activation key will be created in the
QLM database along with the corresponding customer and order information.

Page 158

http://soraco.co/products/qlm/qlmsetup9.exe

FastSpring Setup for Maintenance Plan
 If you sell a yearly maintenance plan to your customer, you can configure FastSpring to automatically
update the maintenance plan expiry date in QLM.

 Click on Products and Pages

 Click on Create Subscription Product

 Name: Yearly Maintenance Plan

 Regular Period Length: 1 year

 USD: xx

 Click on Create

 In the Fulfillment section, click on Add

 Click on the License tab, select Remote and click Next

 URL:

https://qlm3.net/qlmdemov16/QlmLicenseServer/qlmservice.asmx/RenewMaintenancePlan?is_ve
ndor=fastspring&is_user=john&is_pwd=fast123

 License Name Type: Person Full Name + Email

 Click on Create

 Click on Save

 Click on the Home button

 Click on Custom Fields

 Click on Create Customer Field Configuration

 Name: custom_referrer (THIS NAME IS FIXED, IT CANNOT BE CHANGED)

 Click on Next

 Display: Activation Key

 Click on Add Form Field

 Input Type: Textbox

 Required: Yes

Page 159

https://qlm3.net/qlmdemov16/QlmLicenseServer/qlmservice.asmx/RenewMaintenancePlan?is_vendor=fastspring&is_user=john&is_pwd=fast123
https://qlm3.net/qlmdemov16/QlmLicenseServer/qlmservice.asmx/RenewMaintenancePlan?is_vendor=fastspring&is_user=john&is_pwd=fast123

 Name: custom_referrer

 Question Text: Activation Key

 Question Description: Enter your current activation key (starts with the letter A)

 Click on Add

 Click on Save

 Click on Save

 In the Conditions section, click on Edit

 Select Order Environment Condition and click Next

 Environment Tag Exists: is_maintenance_plan

 Click on Create

 Click on Save

 Click on the Home page

To test the maintenance plan configuration:

 Click on Store Testing

 Click on Optional Parameters

 Tags: is_maintenance_plan

 Click on Testing Links tab then Detail for “demo yearly maintenance plan?o:p>

 Click on Order Now, fill contact info then Next

 The next page should show the Activation Key field.

 Go to the QLM Application and locate the license created above.

 Enter the Activation Key in the order form and click on Order

 Once the order is completed, go to QLM and locate your license key

 Refresh the page, select the license and click on the Edit.

 Note how the maintenance plan was increased by a year.

Page 160

 FastSpring Setup for Purchasing an Upgrade
 If you sell upgrades to a specific version of your software, you can integrate FastSpring with QLM’s
license upgrade feature.

 Create a Product in a way similar to the first section

 Click on Create Product

 Name: Upgrade

 USD: xx

 Click on Create

 In the Fulfillment section, click on Add

 Click on the License tab, select Remote and click Next

 URL:

https://qlm3.net/qlmdemov16/QlmLicenseServer/qlmservice.asmx/UpgradeLicense?is_vendor=fa
stspring&is_productid=1&is_majorversion=2&is_minorversion=0&is_qlmversion=5.0.00&is_us
er=john&is_pwd=fast123

 License Name Type: Person Full Name + Email

 Click on Create

 Click on Save

 Create an Email Fulfillment similar to the main Product

 Click on the Home button

 Click on Custom Fields

 Click on “custom_referrer?o:p>

 In the Conditions section, click on Edit

 In the Active Conditions section, click Edit

 Environment Tag Exists: is_maintenance_plan, is_ugprade

 Click on Save

 Click on the Home page

To test the Product Upgrade configuration:

Page 161

https://qlm3.net/qlmdemov16/QlmLicenseServer/qlmservice.asmx/UpgradeLicense?is_vendor=fastspring&is_productid=1&is_majorversion=2&is_minorversion=0&is_qlmversion=5.0.00&is_user=john&is_pwd=fast123
https://qlm3.net/qlmdemov16/QlmLicenseServer/qlmservice.asmx/UpgradeLicense?is_vendor=fastspring&is_productid=1&is_majorversion=2&is_minorversion=0&is_qlmversion=5.0.00&is_user=john&is_pwd=fast123
https://qlm3.net/qlmdemov16/QlmLicenseServer/qlmservice.asmx/UpgradeLicense?is_vendor=fastspring&is_productid=1&is_majorversion=2&is_minorversion=0&is_qlmversion=5.0.00&is_user=john&is_pwd=fast123

 Click on Store Testing

 Option Paramaters / Tags: is_upgrade

 Click on testing links: Demo Upgrade / Detail

 Click on Order Now, then Next

 In the QLM Application, create a license key for product Demo 1.0

 Enter this activation key in the FastSpring form

 Click on Compete Order

 Once the order is completed, go to QLM and click on Today's orders

 Note how a new key is created replacing the old one.

FastSpring Setup for a Subscription Product
 If you sell a subscription based product, you can integrate FastSpring with QLM’s subscription renewal
feature.

 Create a Subscription based Product in FastSpring

 Click on Create Subscription Product

 Name: Your Product

 USD: xx

 Click on Create

 In the Fulfillment section, click on Add

 Click on the License tab, select Remote and click Next

 URL:

https://qlm3.net/qlmdemov16/QlmLicenseServer/qlmservice.asmx/GetActivationKeyWithExpiry
Date?is_vendor=fastspring&is_productid=1&is_majorversion=1&is_minorversion=0&is_qlmver
sion=5.0.00&is_user=john&is_pwd=fast123&is_expduration=36

 5

 Method: HTTP POST

 POST Encoding: UTF-8

 Output Format: Single-Line License

Page 162

https://qlm3.net/qlmdemov16/QlmLicenseServer/qlmservice.asmx/UpgradeLicense?is_vendor=fastspring&is_productid=1&is_majorversion=2&is_minorversion=0&is_qlmversion=5.0.00&is_user=john&is_pwd=fast123
https://qlm3.net/qlmdemov16/QlmLicenseServer/qlmservice.asmx/UpgradeLicense?is_vendor=fastspring&is_productid=1&is_majorversion=2&is_minorversion=0&is_qlmversion=5.0.00&is_user=john&is_pwd=fast123
https://qlm3.net/qlmdemov16/QlmLicenseServer/qlmservice.asmx/UpgradeLicense?is_vendor=fastspring&is_productid=1&is_majorversion=2&is_minorversion=0&is_qlmversion=5.0.00&is_user=john&is_pwd=fast123

 Go to the Advanced tab

 Set the Fulfillment Applicability to: Applies to Non-Rebills / First Orders Only

 Go back to the Fullfillment section and click on Add

 Click on the License tab, select Remote and click Next

 URL: https://qlm3.net/qlmdemov16/QlmLicenseServer/qlmservice.asmx
 /RenewSubscriptionHttp?is_vendor=fastspring&is_user=john&is_pwd=fast123&is_expduration

=365

 Method: HTTP POST

 POST Encoding: UTF-8

 Output Format: Single-Line License

 Go to the Advanced tab

 Set the Fulfillment Applicability to: Applies Rebills Only

 Create an Email Fulfillment similar to the main Product (details as described in the previous

sections).

 Click on Save

To test the Product Upgrade configuration:

 Click on Store Testing

 Select your subscription based product and click on Detail

 Go through the order process

 A subscription based license key will be created.

 In the QLM Application, verify that the license key was indeed created.

 In FastSpring, click on the Reports button in the toolbar

 Next to the Recent Orders button, click on View

 Locate the order you just placed and click on arrow button.

 In the Subscriptions panel, click on the product name

 In the Actions panel, click on Simuate Next Billing

Page 163

https://qlm3.net/qlmdemov16/QlmLicenseServer/qlmservice.asmx/UpgradeLicense?is_vendor=fastspring&is_productid=1&is_majorversion=2&is_minorversion=0&is_qlmversion=5.0.00&is_user=john&is_pwd=fast123

 In the QLM Application, refresh the grid view and verify the the SubscriptionExpiryDate was

pushed by a year.

Page 164

Google
 If you have a merchant account with Google Checkout and are using Google Checkout as your
ecommerce provider, QLM can issue activation keys automatically from Google Checkout's ordering
system.
In order to generate license keys for an order and send the keys to a customer automatically at the time
of purchase, QLM can be used in conjunction with Google's Checkout Merchant Account Settings.
Google Checkout provides a mechanism for immediate notification when a customer purchases your
product. QLM integrates with this mechanism using QlmGoogleCheckout. QlmGoogleCheckout is an
ASP.Net application included with QLM.
When an order is charged either manually by the merchant or automatically by Google Checkout,
QlmGoogleCheckout adds the customer to the QLM database, creates an order in QLM, generates one
or more activation keys, and emails the activation keys to both the merchant and the customer. An order
can include multiple items. One activation key per item is issued. Each item must correspond to a product
defined in QLM.

The Merchant's Shopping Cart
 The following must be added to your shopping cart to map an item to its corresponding QLM product.
If using an XML shopping cart add the following to your cart for each item:

<merchant-private-item-data>productid=1 major=1 minor=0</merchant-private-item-data>
If using an HTML shopping cart add the following to your cart for each item:

<input type="hidden" name="shopping-cart.items.item-1.merchant-private-item-data"
value="productid=1 major=1 minor=0" />

 Where productid represents your QLM productID
 Where major represents the major version of your QLM product
 Where minor represents the minor version of your QLM product
 Note that including a second item in an HTML cart would read shopping-cart.items.item-2....

The Merchant's Google Checkout Account Settings
 The following steps are required to integrate QLM with Google Checkout

 Set up the QLM License Server on a web server by following installation steps found in the
QLM Professional Help.

 Define and upload your products to the QLM License Server. Refer to the QLM Help for
further information.

 Set up the QLM ASP.Net application QlmGoogleCheckout into its own virtual directory. The
virtual directory must be configured to require SLL or TLS.

 Configure the QlmGoogleCheckout application's Web.config file. Set the following application
settings fields:
o <appSettings>
 <add key="company" value="Your Company Name"/>
 <add key="supportEmail" value="support@yourdomain.com"/>
 <add key="smtpServer" value="localhost"/>
 <add key="smtpPort" value="25"/>
 <add key="communicationEncryptionKey"

value="communicationKeyUsedByQLMWeb"/>
 <add key="qlmVersion" value="5.0.00"/>
 <add key="webServiceUrl" value="http://yourserver/qlmweb/qlmservice.asmx"/>
 <add key="merchantID" value="Your Merchant ID"/>
 <add key="merchantKey" value="Your Merchant Key"/>

o </appSettings>
 From your Google Checkout Merchant account, set the following settings

Page 165

o From the Settings Tab, select the Integration link on the left hand side.
o Set the API callback URL to the program to QLMGoogleCheckout's GoogleNotify.aspx

The URL might look something like http://yourdomain.com/qlmgoogle/GoogleNotify.aspx
o Set the Callback method to XML
o (Optional) If you wish to capture the buyer's phone number in QLM, select the Advanced

Settings and and Check the checkbox next to "Return the buyer's billing phone number in the
new order notification.

QLM Order Processing
 When a customer purchases your product, Google Checkout sends a new order notification. QLM will
at this point create a new order in its own database. If the customer does not already exist, a new
customer will be added. The customer's billing coordinates are saved. A QLM order consists of the
following fields:

 ActivationKey
 ProductName
 MajorVersion
 MinorVersion
 OrderDate
 ActivationDate
 OrderID
 NumLicenses

Financial information such as the amount of the order is not stored in QLM. When you charge the order
from your Google Merchant Account, Google Checkout sends a state change notification. QLM will at
this time, send the customer by email his or her activation keys. The merchant is also sent the activation
keys by email. All other notifications from Google Checkout are ignored.
Below is a typical example of the email sent by QLM:
Dear customer name,

Please find below additional information regarding your purchase.

Google order number: 17274818052274
Date of purchase: 11/28/2007

Product: your product name1
Quantity: 1
Activation Key: A00F-C858-8FE1-1340-6001-00A0

Product: your product name2
Quantity: 2
Activation Key: A0B5-C078-97FA-1220-4102-00A0

For additional inquiries, please contact support@yourdomain.com with the above information.

Thank you,

Your company name

 QLM Google Checkout Deployment
 To deploy the QLM Google Checkout module to your server, follow the steps below:

 Create a virtual directory on your IIS server called qlmgoogle.

Page 166

javascript:top.opencompose('support@yourcompany.com','','','1')
http://yourdomain.com/qlmgoogle/GoogleNotify.aspx

 Configure the virtual directory to require an SSL connection.
 Copy all the files located in the %Public%\Public Documents\Quick License

Manager\DeployToServer\QlmGoogleCheckout folder to the qlmgoogle virtual directory.
 Edit the web.config and customize it as described above.

Page 167

Paypal
 If you are using Paypal as an ecommerce provider, QLM integrates seamlessly with Paypal's ordering
system. In order to generate a license key for an order and send the key to a customer automatically at
the time of purchase, QLM can be used in conjunction with PayPal's Instance Payment Notification
(IPN). PayPal's IPN provides immediate notification when a customer purchases your product.
QLM's integration with Paypal performs the following tasks:
1. It validates the paypal request.
2. It contacts the QLM License Server and issues an activation.
3. It sends an email to the customer with the activation key.
In order to set up the IPN, you need to modify your PayPal account's Profile to enable Instant Payment
Notification and specify a URL to the QLM service that handles Paypal Notifications. Alternatively, you
can activate IPN by including the notify_url in your PayPal button HTML.
You can also use the IPN Simulator
 to test the integration.
The URL to the QLM service that handles Paypal notifications is:
http://yourserver/qlm/qlmpaypalipn.aspx
For detail instructions on Instant Payment Notification, please refer to PayPal's Order Management
Integration Guide found on its website under the tab Merchant Services.

Process Customization
 The QLM Site Server Properties enable you to customize all Paypal specific properties. You can access
the Server Properties from the Manage Keys tab / Sites / Server Properties.
Desription of Paypal Settings:

 vendorCompanyName: Name of your company.
 vendorCompanyEmail: Your email address. QLM will cc you every time an email is sent to a

customer.
 tempalteFile: Name of the template file. The template file contains the body of the email message

that is sent to the customer. The template contains variables that will be replaced at runtime. The
template file is located in the same folder as qlmpaypalipn.aspx.

 smtpServer: The SMTP server to use when sending emails.
 smtpUser: The credentials of the user that needs to authenticate with the SMTP server.
 smtpPassword: The password of the user that needs to authenticate with the SMTP server.
 smtpPort: The port of the SMTP server.
 paypalUrl: Url of the paypal service. When testing in a sandbox, the URL is typically:

https://ipnpb.sandbox.paypal.com/cgi-bin/webscr. When going live, change the URL to:
https://ipnpb.paypal.com/cgi-bin/webscr

 qlmWebServiceUrl = URL to the QLM License Server, typically located in the same virtual
directory.

 defaultUrlArgs=When configuring your paypal cart or Buy Now page, you typically need to
configure the productid, major version and minor version (more details later). If these arguments
are not provided, the system will default to the product, major and minor version defined in this
setting.

 loggingLevel: specifies the level of logs generated. The levels are defined as follows: Errors: 1 -
Warnings: 2 - Information: 4 - Verbose: 8. To log errors and warnings, set the loggingLevel to 3.
To log all events, set the loggingLevel to 15.

 ignoreCustomArgument: When set to true, the paypal custom argument is ignored by QLM. The
default is false.

 ignoreItemNumberArgument: When set to true, the paypal item_number argument is ignored by
QLM. The default is false.

Page 168

https://developer.paypal.com/developer/ipnSimulator/
https://ipnpb.sandbox.paypal.com/cgi-bin/webscr
http://yourserver/qlm/qlmpaypalipn.aspx

 paypalFields: PayPal posts variables to the IPN process. Some of these variables are declared in
your shopping cart or in your company's purchase page and others are sent by PayPal
automatically. For example, your purchase page defines your company by using the variable
called "business". Similarly, PayPal uses the variable payer_email to identify the customer's email
address. The paypalFields setting lists the paypal fields that QLM will process. A list of the most
common fields is preconfigured but you can add more fields if needed. Any field that is added
can be used in the email template.

When configuring your Buy Now button or your Paypal cart, you must configure the following IPN
variables. These variables are required by the QlmPaypalIPN process:

 item_name: product's name, must be changed to be the name of your product.
 item_number or custom:

&is_productid=x&is_majorversion=y&is_minorversion=z&is_features=0:1;1:3
 where x,y,z and f must be replaced with the values that correspond to your product.
When working with carts, Paypal appends a digit at the end of item_name and item_number
 for each product listed in the cart. QLM will process all products in the cart and send a single email to
the customer with the license keys for all the selected products. Additionally, you can customize the email
template to use when sending an email to the customer. To customize the email template, add the
is_emailtemplate argument as follows: &is_emailtemplate=template1.txt. The email template files must
be located in the License Server folder, in the same location as the default QlmEmailTemplate.txt
template file.

The email template can contain any paypal variable such as %payer_email% or %ProductName%.
When your cart includes multiple items, each item will be listed in the email as defined in the
%ItemTemplate% section. The %ItemTemplate% section starts with an %ItemTemplate% tag and end
with a corresponding tag. All lines in between the 2 tags are repeated for each item in the cart.

Testing

Once you have completed the customization above, you can use the Paypal IPN simulator to test that the
ordering process is working as expected.

The Paypal IPN simulator is located here:
https://developer.paypal.com/webapps/developer/applications/ipn_simulator

In the IPN simulator, set the following fields:
 IPN handler URL: http://yourserver/qlm/qlmpaypalipn.aspx
 Transaction type: eCheck Complete
 Payment type: eCheck
 payment_status: Completed
 Enter the buyers information
 custom: &is_productid=x&is_majorversion=y&is_minorversion=z&is_features=0:1;1:3 (update

these values to match your product)

Page 169

https://developer.paypal.com/webapps/developer/applications/ipn_simulator
http://yourserver/qlm/qlmpaypalipn.aspx
http://yourserver/qlm/qlmpaypalipn.aspx

Plimus
 If you are using Plimus as an ecommerce provider, QLM integrates seamlessly with Plimus's ordering
system.
 To have Plimus invoke QLM during an order, do the following in Plimus Control Panel:

 Click on My Account

 Locate your Product and click on Setup.

 Locate a contract and click on Setup.

 Click on the License Keys link.

 In the License Group/Method field, select: Custom HTPP request.

 In the Call Method field, select: One call per Order.

 In the URL for HTTP request, enter the following:

http://yourserver/qlm/qlmservice.asmx/GetActivationKey?is_vendor=plimus&is_productid=1
&is_majorversion=1&is_minorversion=0&is_qlmversion=5.0.00&is_features=0&order_id=
<INVOICE_ID>&email=<CUSTOMER_EMAIL>&name=<CUSTOMER_NAM
E>&company=<COMPANY_NAME>&addr1=<CUSTOMER_ADDRESS1>&add
r2=<CUSTOMER_ADDRESS2>&city=<CUSTOMER_CITY>&state=<CUSTO
MER_STATE>&zip=<CUSTOMER_ZIPCODE>&country=<CUSTOMER_COUN
TRY>&phone=<CUSTOMER_PHONE>&quantity=<QUANTITY>

where
 is_vendor = plimus
 is_productid = your product id as defined in QLM
 is_majorversion = your product's major version as defined in QLM
 is minorversion = your product's minor version as defined in QLM
 is_qlmversion = 5.0.00
 is_features = semi comma separated list of feature sets and their corresponding values. Example:

is_features=0:3;1:1. This means that in feature set 0, features 1 + 2 are enabled and in feature set
1, feature 1 is enabled.

 is_user = username defined in Manage Keys / 3rd Party Extensions (optional)
 is_pwd = password defined in Manage Keys / 3rd Party Extensions (optional)

 With the steps above completed, place a test order. When the order is placed, the following will occur:

 A new user will be automatically added to the QLM database based on the information collected

during the ordering process.

 An activation key will be created in the QLM database and associated to the user.

 If you would like to customize the email that is sent to the customer with the activation key, in the

Plimus control panel, click on the Order Email link and add the following line to the body of the
email:

Your Activation Key: <LICENSE_KEYS>

Page 170

http://yourserver/qlm/qlmservice.asmx/GetActivationKey?is_vendor=plimus&is_productid=1

Regnow
 If you are using Regnow as an ecommerce provider, QLM integrates seamlessly with Regnow's ordering
system.
 To have Regnow invoke QLM during an order, do the following in Regnow Control Panel:

 Click on Products

 Select a Product and click on Edit.

 Click on the Manage Delivery Options tab.

 Locate the Method field and select Post.

 Locate the http:// field and enter the following URL:

http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>
&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&is_vendor=regnow
&is_features=<features>
 where

 is_vendor = regnow
 is_productid = your product id as defined in QLM
 is_majorversion = your product's major version as defined in QLM
 is minorversion = your product's minor version as defined in QLM
 is_qlmversion = 5.0.00
 is_features = semi comma separated list of feature sets and their corresponding values. Example:

is_features=0:3;1:1. This means that in feature set 0, features 1 + 2 are enabled and in feature set
1, feature 1 is enabled.

 is_user = username defined in Manage Keys / 3rd Party Extensions (optional)
 is_pwd = password defined in Manage Keys / 3rd Party Extensions (optional)

 With the steps above completed, place a test order. When the order is placed, the following will occur:

 A new user will be automatically added to the QLM database based on the information collected

during the ordering process.

 An activation key will be created in the QLM database and associated to the user.

 An email will be sent to the customer with the activation key.

Page 171

http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&vendor=regnow&is_features=<features
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&vendor=regnow&is_features=<features
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&vendor=regnow&is_features=<features
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&vendor=regnow&is_features=<features
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&vendor=regnow&is_features=<features
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&vendor=regnow&is_features=<features
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&vendor=regnow&is_features=<features
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&vendor=regnow&is_features=<features
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&vendor=regnow&is_features=<features
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&vendor=regnow&is_features=<features
http://
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=

ShareIt
 If you are using ShareIt as an e-commerce provider, QLM can be used to issue license keys and save
the order and customer information when a customer purchases your product using ShareIt's ordering
system.
 To have ShareIt invoke QLM at the time of purchase, do the following:

 Setup the QLM License Server on your server

 Optionally, configure authentication to connect to ShareIt. To configure authentication, click on

Manage Keys / Tools / eCommerce Providers and specify the credentials for ShareIt.

 Create or edit your product in ShareIt's Control Panel

 Ask ShareIt personnel to set your product's Key Generator URL to the following URL:

http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?&is_vendor
=ShareIt&is_productid=<productid>&is_majorversion=<majorversion>
&is_minorversion=<minorversion>&is_qlmversion=<qlmversion>&is_pwd=<pwd
&is_user=<username>&is_features=
 Where:
 is_vendor = ShareIt
 is_productid = your product id as defined in QLM
 is_majorversion = your product's major version as defined in QLM
 is minorversion = your product's minor version as defined in QLM
 is_qlmversion = 5.0.00
 is_features = semi comma separated list of feature sets and their corresponding values.

Example: is_features=0:3;1:1. This means that in feature set 0, features 1 + 2 are enabled and
in feature set 1, feature 1 is enabled.

 is_user = username defined in Manage Keys / 3rd Party Extensions (optional)
 is_pwd = password defined in Manage Keys / 3rd Party Extensions (optional)

 With the steps above completed, place a test order. When the order is placed, the following will occur:

 A new user will be automatically added to the QLM database based on the information collected

during the ordering process.

 An activation key will be created in the QLM database and associated to the user.

 An email will be sent to the customer with the activation key.

Page 172

http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?&is_vendor

SWREG
 If you are using SWREG as an ecommerce provider, QLM integrates seamlessly with SWREG's
ordering system.
 To have SWREG invoke QLM during an order, do the following in the SWREG Control Panel:

 Click on Create/Edit Products

 Select a Product and click on Edit.

 Click on the Edit Delivery Method.

 Click on Edit Email.

 Locate the Keycode generator URLfield and enter the following URL:

http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey
 When invoking the SWREG order form from your web site, add the following argument to the SWREG
URL:
&t=pid%3d<productID>%26mj%3d<majorVersion>%26mn%3d<minorVersion>%26vn%3d
SWREG%26fe%3d<features> %26ur%3d<user> %26pw%3d<password> &x=1
 where,

 vn = SWREG
 productID = your product id as defined in QLM
 majorVersion = your product's major version as defined in QLM
 minorVersion = your product's minor version as defined in QLM
 features = semi comma separated list of feature sets and their corresponding values. Example:

is_features=0:3;1:1. This means that in feature set 0, features 1 + 2 are enabled and in feature set
1, feature 1 is enabled.

 user = username defined in Manage Keys / 3rd Party Extensions (optional)
 password = password defined in Manage Keys / 3rd Party Extensions (optional)

Note: Due to limitations in the maximum number of characters in SWREG's user_text field, the name of
the arguments above have been abbreviated.
For example:
https://usd.swreg.org/cgi-bin/s.cgi?s=46994&p=46994TESTPROD&v=0&d=0&q=1&t=pid%3d4%26
mj%3d4%26mn%3d0%26vn%3dSWREG&x=1
 With the steps above completed, place a test order. When the order is placed, the following will occur:

 A new user will be automatically added to the QLM database based on the information collected

during the ordering process.

 An activation key will be created in the QLM database and associated to the user.

 An email will be sent to the customer with the activation key.

Page 173

http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey
https://usd.swreg.org/cgi-bin/s.cgi?s=45794&p=45794QLM3&v=0&d=0&q=1&t=pid%3d9%26mj%3d4%26mn%3d0%26vn%3dSWREG&x=1
https://usd.swreg.org/cgi-bin/s.cgi?s=45794&p=45794QLM3&v=0&d=0&q=1&t=pid%3d9%26mj%3d4%26mn%3d0%26vn%3dSWREG&x=1
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey

UltraCart
 Quick License Manager integrate with UltraCart's ordering system to generate activation codes
automatically.

To have UltraCart invoke QLM during an order, do the following:

From within your UltraCart account:

From Item Management -> Items

 Locate your Product and open the Item Editor for this product

 In the Item Editor, select the Digital Delivery tab

 In the Activation Codes section of the Digital Delivery tab:

 Select Retrieve Real-time

 Enter the following URL (change the 'yourserver' name to your own)

http://yourserver/qlm/qlmservice.asmx/GetActivationKey?is_vendor=ultracart&is_p
roductid=1&is_majorversion=1&is_minorversion=0&is_qlmversion=5.0.00&is_feat
ures=0 ;

 Where
is_vendor = ultracart
is_productid = your product id as defined in QLM
is_majorversion = your product's major version as defined in QLM
is_minorversion = your product's minor version as defined in QLM
is_qlmversion = 5.0.00
is_features = semicolon separated list of feature sets and their corresponding values.
Example: is_features=0:3;1:1. This means that in feature set 0, features 1 + 2 are enabled and
in feature set 1, feature 1 is enabled.

 Enter a value in the Shared Secret field. Remember this value as it needs to be set in QLM as
well.

Next configure QLM to include the UltraCart provider as follows:

From Manage Keys-> License Management tab

 Select Tools -> eCommerce Providers

 Click the Add button and enter the following values:

o Name: UltraCart
o Class: Qlmsvc.UltraCart
o Dll: UltraCart.dll
o User:
o Password: Shared Secret entered in UltraCart Activation Code section

 Edit your QLM server's Web.config file and set the following setting:
<setting name="defaultVendor" serializeAs="String"> ;

Page 174

http://yourserver/qlm/qlmservice.asmx/GetActivationKey?is_vendor=ultracart&is_p

<value>UltraCart</value>
</setting>

 With the above steps completed, place a test order. When the order is placed, the following will occur:

 A new user will be automatically added to the QLM database based on the information collected

during the ordering process.

 An activation key will be created in the QLM database and associated to the user.

Page 175

Adding a new eCommerce Provider
 QLM Professional supports several eCommerce providers. If QLM does not support your eCommerce
provider, you can either extend QLM to support your provider or contact our Professional Services to
receive a quote for supporting your eCommerce provider.

Creating your eCommerce Provider plugin
 The sample program Regnow located in:

%Public%\Documents\Quick License Manager\Samples\QLMPro\Windows\Regnow
provides a starting point to create your own eCommerce provider plugin.
The eCommerce provider plugin serves 2 purposes: (a) to extract information sent by your eCommerce
provider during the purchase process and map this information to QLM fields and (b) to format the
output of the license key request sent by your eCommerce provider using the syntax expected by your
eCommerce provider.

Configuring data extraction from eCommerce provider into QLM Database
 Upon an item purchase, eCommerce providers can typically invoke a License Server and provide details
about the order. The information provided includes data such as customer name, email address, product
ordered, number of lcienses, etc.. In order to capture this information and update the QLM database
accordingly, the plugin needs to map the eCommerce provider data into QLM fields. A set of properties
can be overwrritten in the plugin class to customize this mapping. The properties that can be overwritten
are:

Order ID
OrderStatus
ReceiptID
CustomerEmail
CustomerName
CustomerCompany
CustomerAddress1
CustomerAddress2
CustomerCity
CustomerState
CustomerZip
CustomerCountry
CustomerPhone
CustomerIP
CustomerNotes
Quantity
MaintenancePlan

 Configuring the format of the license key
 Upon purchase of an item, eCommerce providers typically expect a license key to be returned when
they invoke the QLM License Server. The format of the returned key or keys differs for each
eCommerce provider.
You can customize via the QLM plugin the format of the returned key to meet your eCommerce
provider's requirements.
A set of methods can be overwrritten in the plugin class to customize this syntax. The methods that can
be overwritten are:

WriteStart
WriteEnd

Page 176

WriteKeyStart
WriteKeyEnd
WriteOrderInfo
WriteMaintenanceRenewalResponse
WriteUpgradeLicenseResponse
WriteError

Configuring authentication
 eCommerce providers connect to the QLM License Server via an http request. To ensure that hackers
do not contact your License Server easily, you can provide a username / password on the url command
line. Since the License Server is invoked directly from your eCommerce provider, end users will never be
able to intercept that URL and discover the password.
The default behavior of QLM supports validating a user/password by comparing the command line
arguments with a user/password that you can configure and define in the QLM Console. You can also
customize the authentication mechansim by overwritnig the following method:

AuthenticateUser

Deployment of your plugin
 Once you have completed development of your plugin, follow the procedure below to install it and
register it:

 Deploy the DLL to the bin folder on your web server, in the same folder as the
QlmCommerceProvider.dll file.

 Launch the QLM Console
 Click on Manage Keys / Tools / eCommerce Providers
 Click on the Add button and enter the data associated with your provider
 Fill in all the fields. For help on each field, click on the text field and read the help in the loght

bulb section
 Click OK

Testing your plugin
 Once the above steps are completed, you can test your plugin. Most eCommerce providers support a
test mode where you can submit a dummy order. To help diagnose problems with your plugin, configure
the QLM License Server to log verbose events by updating the loggingLevel setting to 15
.
When a test is performed from your eCommerce provider, you can view details about the request from
the QLM Events Viewer. To launch the Events Viewer, click on Manage Keys / Tools / View Server
Event Log.

Page 177

Check for Updates
 QLM provides a framework that allows you to implement a "Check for Updates" feature for your
software. The "Check for Updates" feature allows you to automatically inform your users when a new
version of your software is available to download.
Below are the steps required to implement a Check for Updates feature in your application:

 In the Define Product screen, click on the Latest Version tab and specify the details of the latest
version of your software:
o Latest Version: Enter the version number of your latest release. Example: 3.1.0
o URL the latest version: Enter a URL from where the user can download the latest version.

This URL can be used from your application to either automatically download your
application or simply display the URL to the user.

o Notes about latest version: Enter notes that you would like to display to the user if QLM
detects that a new version is available.

 In QLM, click on Manage Keys / Sites. In the License Server tab, select the appropriate profile
and click on "Upload products to License Server" to upload your product data to the server.

 In your application, create a button or a timer based routine that calls the GetLatestVersion
function (see API Reference for details).

 Compare the server's version with the installed version and prompt users with the option to
upgrade their version if appropriate.

 The QLM Check For Updates Sample shows how to implement the Check for Updates feature in your
application. The sample is located in:

 %Public%\Documents\Quick License
Manager\Samples\qlmpro\Windows\DotNet\Basic\C#\QlmCheckForUpdates

Page 178

Terminal Server
 QLM Professional can limit the number of instances of your application running on a Terminal Server.
To restrict the number of instances on a Terminal Server, you must set the "Floating Seats" property
when creating an Activation Key.
Below are the steps required to specify the number of allowed terminal server instances:

 Click on the Manage Keys tab.
 Click on the Create button.
 Specify the Floating Seats property to the number of instances allowed to run on the Terminal

Server.
 Click OK

In your code, you must also set the LimitTerminalServerInstances property to true. The default value is
false
.
Note that an instance is uniquely identified by a session id and a user id. For example, if only 1 instance is
allowed, the same user can still launch your application multiple times within the same Terminal Server
session. That same user will not be able to start another Terminal Server session and start another
instance of your application.

Page 179

Scheduled Tasks
 QLM can schedule and execute tasks such as emailing notifications to your customers or displaying
alerts when the QLM database is updated. QLM includes one built-in email scheduled task designed for
implementing a Maintenance Plan for your product and several alert type tasks. You can use these tasks
as is, customize them to suit your needs, or create other scheduled tasks that meet your special needs.
Note that in order for tasks to run, the Quick License Manager Agent must be running.
Below are the steps required to create scheduled tasks:

 Click on the Manage Keys tab.
 Click on the Scheduled Tasks button.
 Click on Add.
 If you have multiple web servers, select the License Server profile to use. Otherwise, select the

Default profile.
 Select the Search to execute. The scheduled task will be executed on each record returned by

the search.
 Specify how often the task will run.
 To configure an Email notification task, click on the Email tab and check the Enable Email

Notification box, then fill in all the remaining fields.
 To configure an Alert notification task, click on the Alert tab and check the Enable Alert box,

then fill in all the remaining fields. The Message fields supports variables such as %FullName% or
%ActivationKey%.

Note that QLM uses your Outlook 2003 or 2007 client to send emails. You need to be logged in to the
system for email notifications to work.

Page 180

Maintenance Plan
 QLM provides a complete framework for implementing a maintenance plan for your software.
When a customer activates a license key, the QLM License Server validates that the license key
corresponds to the version the customer is running. For example, if a customer is running version 6.0 of
your software but has an Activation key for version 5.0, the QLM License Server will fail to activate the
license.
However, if a customer purchases a maintenance plan for your software, the QLM License Server will
allow activation of a recent version of your software with an activation key for a previous version. For
example, if a customer is running version 6.0 of your software but has an Activation key for version 5.0,
the QLM License Server will successfully activate the license if the maintenance plan is active and the
MaintenancePlanRenewal date is greater than the Release Date of the new version of your product. The
Release Date of your product can be defined on the Define Product page in the QLM Console.
The QLM database stores maintenance plan information in the MaintenanceRenewalDate field. If the
maintenance plan is not enabled, this field will be empty. If the maintenance plan is enabled, the field will
be set to the expiry date of the maintenance plan.
The MaintenanceRenewalDate can be set during the order process or manually via the QLM console.
To enable the maintenance plan during the ordering process, you can invoke the following URL:

http://yourserver/qlm/qlmservice.asmx/EnableMaintenancePlan?is_vendor=<vendor>&is_user=<
user>&is_pwd=<pwd>

where:
 <vendor> is the name of your vendor (see list of supported eCommerce providers)
 <user> is a user to use for authentication (as defined in Manage Keys / 3rd Party Extensions)
 <pwd> is a password to use for authentication (as defined in Manage Keys / 3rd Party

Extensions)
The maintenance plan date is set to 365 days after the Order Date. You can control this setting from the
web.config file of the QLM License Server.
Alternatively, you can customize your eCommerce provider order form to publish a new field during the
POST to specify whether the maintenance plan was purchased. The name of the field is typically different
for each eCommerce provider. The table below describes the name of this field for each of the supported
eCommerce providers:
Provider Field Name
Digibuy maintenance
Regnow yearly_maintenance_plan
Paypal MaintenancePlan
ShareIt yearly_maintenance_plan
Plimus is_maintenance_plan

To set the maintenance plan using the QLM console:
 For a new activation key, click on Manage Keys / Licenses / Create and check the Maintenance

Plan check box.
 For an existing activation key, click on Manage Keys / Licenses / Edit then specify a Renewal

Date for the Maintenance Plan.

Maintenance Plan Email Notification
 To remind customers to renew the maintenance plan, you can schedule a task that will send your
customers a reminder email prior to the expiry of the maintenance plan. For more details, see the help on
Scheduled Tasks.

Page 181

http://yourserver/qlm/qlmservice.asmx/EnableMaintenancePlan?is_vendor=<vendor>&is_user=<

Place an order to renew a maintenance plan
 When a maintenance plan expires, you can renew the maintenance plan from your eCommerce
provider's ordering system by invoking the following URL:

http://yourserver/qlm/qlmservice.asmx/RenewMaintenancePlan?&is_avkey=<activationKey>&is
_vendor=<vendor>

where:
 <activationKey> is the activation key of the customer
 <vendor> is the name of your vendor (see list of supported eCommerce providers)

Page 182

http://yourserver/qlm/qlmservice.asmx/RenewMaintenancePlan?&is_avkey=<activationKey>&is

 Subscription licensing
 If you sell your software as a subscription, QLM can create license keys that expire at a specific date or
after a set duration. This is identical to trial keys.
To create a license key with an expiry date, you can use one of the following methods:

1. The QLM Console (Manage Keys / Create)
2. The QLM API (CreateActivationKeyWithExpiryDateEx).
3. The Http method GetActivationKeyWithExpiryDate, typically invoked directly from your

ecommerce provider. See Http methods in the help for more details.
Once a subscription expires, if your customer does not renew the subscription, the license expires and
your software no longer runs.
If your customer decides to renew the subscription, you can renew the license without sending your
customer a new license key. The customer simply needs to reactivate their license to extend it to the new
expiry date.
Extending a subscription can be performed in 3 different ways:

1. From the QLM Console, under Manage Keys / Renew Subscription
2. By using the QLM API RenewSubscription from your application.
3. By using the Http method RenewSubscriptionHttp from your ecommerce provider. See Http

methods in the help for more details.

Page 183

Affiliates
 If you use affiliates to sell your product, QLM allows you to manage your affiliates' sales. The QLM
Portal provides a web inteface for your affiliates to generate license keys for their customers. You can
configure the following restrictions for Affiliates:

 Maximum number of trial keys per system
 Maximum number of permanent keys per system
 Maximum total keys
 Maximum activations per key

In addition, you can control what operations an Affiliate can perform from the QLM Portal:
 Creating new keys
 Activating keys
 Releasing keys
 Deleting keys
 Creating customers
 Deleting customers
 Exporting keys
 Setting the Expiry Duration of a new key
 Settings the Expiry Date of a new key
 Settings the Maintenance Plan option
 Setting the Generic license option

Registering your license
 The QLM Portal is an add-on to QLM, it is not a replacement for the QLM Management Console. It
provides a subset of the features available in the QLM Management Console.
To register your license and enable the QLM Portal add-on:

 Start the QLM Application
 Go to the Manage Keys tab
 Click on Sites
 Select your License Server profile
 In the Portal License Key field, enter your QLM Portal license key and click on Register. Note

that the QLM Portal License Key is not the same as your QLM Professional or Enterprise
license key. If you have not purchased the QLM Portal add-on, you can do so from our web
site.

Installing the QLM Portal
 The QLM portal can be installed via the setup (QlmLicenseServerSetup.exe) or manually.
If you can run a setup program on your web server, run the QlmLicenseServerSetup.exe on your server
and make sure that the QLM Portal feature is selected.
If you cannot run a setup program on your web server, following are the manual steps to install the QLM
Portal:

 Create a virtual directory on your web server called: QlmPortal
 Upload all the files in the %Public%\Public Documents\Quick License Manager\DeployToServer

folder to the QlmPortal virtual directory
 Enable ASP.NET 4.0 for the virtual directory.
 Customize the following appSettings in the web.config file as follows:

o communicationEncryptionKey

Page 184

o adminEncryptionKey
o sqlSyntax
o webServiceUrl

 Additionally, you should customize the connectionStrings settings in the web.config file.
The QLM portal uses ASP.NET forms authentication to validate users. To enable ASP.NET forms
authentication, the QLM database needs to be updated to maintain authentication information. To
upgrade your QLM database, run the sql2005.aspnet.sql script located in the following folder (if you
installed the QLM Portal via the QlmLicenseServerSetup.exe, this step can be skipped):

%Public%\Public Documents\Quick License Manager\DeployToServer\QlmLicenseServer\Db

 Accessing the QLM Portal
 The first step in setting up a portal is to create the Administrator's user account. To do so, start the
QLM Application and:

 Go to the Manage Keys tab.
 Click on User Accounts in the Portal group.
 Click on the Add button to create a new user account.
 Fill in all the fields as required. When asked to associate a User Profile with the user account, if

you select None, the user will be able to create an unlimited amount of keys. If you select a User
Profile, the user will be able to create as many keys as allowed for this specific User Profile.

Now that you have an account, you may login to the portal at the following URL:
http://yourserver/qlmportal/qlmportal.aspx

Once logged in, you can create license keys for your products as well as add new customers.
To create a user account for your affiliate:

 Go to the Manage Keys tab.
 Click on User Profiles in the Portal group.
 Click on the Add button to create a new user affiliate. You can control how many license keys an

affiliate can create and for which products they can create license keys.
 Once the affiliate created, click on User Accounts in the Portal group.
 Click on the Add button to create a new user account for your affiliate and select the

corresponding Affiliate from the Affiliate dropdown.
 Provide your affiliate with the URL to the portal and his account information.

On the QLM Portal, affiliates can only see customers that they are associated to. If a customer is created
from the QLM Portal, the customer is automatically associated to the logged in affiliate. If a customer is
created from the QLM application Manage Customers tab, you can associate the customer to the affiliate
when the customer is created or at any other time by clicking on the Manage Customers / Edit option.

Page 185

http://yourserver/qlmportal/qlmportal.aspx

Server Event Log
 When errors occur in the QLM License Server, QLM logs errors messages to the QLM database.
These error messages can be viewed from the QLM Console by clicking on Mange Keys / Tools / View
Server Event Log. QLM has several levels of logging. QLM can log errors, warnings and information.
You can control the logging level by editing the loggingLevel setting in web.config file of the QLM
License Server. The possible values for the logging level are:

 Error=1
 Warning=2
 Information=4
 Verbose=8

These settings can be combined together as follows:
To log errors and warnings, set the value to: 3
 To log errors, warnings and information, set the value to: 7
 To log errors, warnings, information and verbose messages, set the value to: 15

Page 186

Illegal Computers
 QLM can track illegal computers that connect to the License Server and logs information about these
computers in the database. An illegal computer is defined as a computer that has a valid license key but
whose license key is (a) not in the database or (b) in the database but registered for another computer.
This situation can occur if a user with a valid license key requests that his license be released from
computer A claiming to have uninstalled your program from computer A. If the user subsequently
attempts to connect to the License Server via computer A, QLM detects this computer as an illegal
computer and logs it in the database. There are two ways to enable illegal computers detection in your
application:

 The QlmCustomerSite provides a web page that your application can connect to by invoking a
url. For example:

 http://yourserver/QlmCustomerSite/qlmlicenseinfo.aspx/?is_avkey=AGGI0U0Q00NSSUYY8E
H31U1TZ4&is_cpkey=UAJD0M0600PBIUU28NKH1A12JM&is_cpid=MYPC&is_cpname
=MYPC&is_qlmversion=5.0.00

 where:

 is_avkey specifies the user's activation key

 is_cpkey specifies the user's computer bound key

 is_cpid specifies the unique computer identifier

 is_cpname specifies the computer name

 is_qlmversion specifies the version of the QLM engine

 When your application is launched, connect to the page above to display license information to
your end user. In addition to providing licensing information to the user, this page will detect
illegal computers and log them in the database. The QlmCustomerSite can be found in the
%Public%\Public Documents\Quick License Manager\DeployToServer folder. The deployment
procedure for this portal is identical to the one for the QLM License Server. If you have installed
the QLM License Server using the setup program QlmLicenseServerSetup.exe, then the
QlmCustomerSite is already deployed on your server.

 The QLM API (in QlmLicenseLib.dll) includes a new method called IsIllegalComputer to
detect illegal computers. This method should be ideally be called every time your application is
launched.

 To view illegal computers, click on the Manage Keys tab then select the Illegal Computers button.
Note that QLM does not prevent users from running your application if an illegal computer is detected.

Page 187

http://yourserver/QlmCustomerSite/qlmlicenseinfo.aspx/?is_avkey=AGGI0U0Q00NSSUYY8E

 Deactivating a license
 Deactivating your customer's license from one computer so that it can be activated on another can be
done in one of two ways: (a) via the QLM Application or (b) via the QLM API.
To release a license via the QLM Application:

1. In the QLM Application, under Manage Keys, locate the license to transfer and select it
2. Click on the Release button

It is recommended to use the QlmLicense.IsIllegalComputer method in your application to detect illegal
usage of a license.
To release a license via the QLM API:

1. Call the QlmLicense.ReleaseLicense method
2. Call the QlmLicense.DeleteKeys method

Releasing a QLM license via the QLM API is the preferred option as it allows you to delete license keys
stored on the end user system as well as releasing the license in the QLM database.
Additionally, it is recommended to integrate releasing a license in your uninstaller.

Page 188

Calling the QLM .NET API from VB or C++
 The QLM API that connects to the QLM License Server was developed with .NET. If your application
was developed in C++, VB6 or any other unmanaged code that cannot call .NET API directly, you may
still use the QLM API via the COM interface.
To enable the QLM API to be called as a COM interface, you need to do the following:

 Generate a type library to be refrenced by your code
 regasm /tlb "<fullpath>\QlmLicenseLib.dll"
 Register the QlmLicenseLib.dll as a COM object
 regasm /codebase "<fullpath>\QlmLicenseLib.dll"

Page 189

 QLM Customer Site
 The QLM Customer site is a collection of web pages that you can integrate to your site to automate
some processes and provide self-help to your customers. The available pages are:

 QlmLicenseInfo.aspx - Displays license information to your end users
 QlmRegistrationForm.aspx - A registration form that collects user information and generates a

trial key for a given product
 QlmReleaseLicense.aspx - A form that your users can fill out to de-activate a license from a

given computer
 QlmWebActivation.aspx - A form that your users can fill out to activate a license from a given

computer. This is particular useful if the computer that needs to activate a license is not connected
to the internet.

The QLM Customer Site is deployed alongside the QLM License Server in the QlmCustomerSite folder.
If you deploy the QLM License Server manually, you must deploy the QlmCustomerSite (in the
DeployToServer folder) and configure the QlmCustomerSite as an IIS Application.
PAGE ARGUMENT DESCRIPTION
QlmLicenseInfo.aspx

is_avkey Activation Key of the end user

is_pckey Computer Key of the end user.

is_pcid Computer ID of the end user.

is_pcname Computer Name of the end user.

Example:

http://quicklicensemanager.com/QlmCusto
merSite/qlmlicenseinfo.aspx?is_avkey=A
XK80-60R00-GHJ3S-I862Y-1I1UR-A
QDV2&ispckey=UTME0D0P00BZ74Z
W8SNV1N1S5D&is_pcid=123
;

QlmRegistrationForm.aspx

is_productname Name of the product.

is_productid ID of the product.

is_majorversion Major version of the product.

is_minorversion Minor version of the product.

is_expduration
Duration of the license, i.e. number of
days after which the license will expire

is_expdate

Date at which the license expires. Default
date format is:yyyy-MM-dd. The format
can be changed from the web.config file.

is_emailfrom When sending email, specify the email

Page 190

http://quicklicensemanager.com/QlmCusto

address of the sender.

is_emailsubject

Customize the subject of the email.
Variables are allowed. See supported
variables below.

is_confirmationmessage

The message that is displayed to the user
upon successful registration. Variables are
allowed.

Variables

The following variables can be used in the
appropriate fields:

 %ActivationKey%
 %FullName%
 %Email%
 %EmailFrom%
 %ProductName%
 %MajorVersion%
 %MinorVersion%

Example

http://quicklicensemanager.com/QlmCusto
merSite/qlmregistrationform.aspx?is_prod
uctname=My
Product&is_productid=1&is_majorversio
n=1&is_minorversion=0&is_expduration
=10&is_emailfrom=support@soraco.co
&is_emailsubject=Your Download of
%ProductName%&is_confirmationmessa
ge=Your License information was emailed
to: %Email%
;

QlmReleaseLicense.aspx

is_avkey
Activation Key of the end user.This
argument is optional.

is_pcid
Computer ID of the end user. This
argument is optional.

Example

http://quicklicensemanager.com/QlmCusto
merSite/QlmReleaseLicense.aspx?is_avke
y=AXK80-60R00-GHJ3S-I862Y-1I1U
R-AQDV2&is_pcid=123;

QlmWebActivation.aspx
is_avkey Activation Key of the end user. This

Page 191

http://quicklicensemanager.com/QlmCusto
http://quicklicensemanager.com/QlmCusto

argument is optional.

is_pcid
Computer ID of the end user. This
argument is optional.

is_file

Set is_file to 1 to have this page generate
a digitally signed license file (for QLM
Enterprise users building cross platform
apps). When generating a license file, you
can customize the following settings in the
web.config file of QlmCustomerSite:

 offlineActivationSuccessMessage:
the message that is dispayed upon
successful generation of the
license file.

 licenseFileName: the name of the
generated license file.

 licenseFileName: the name of the
generated license file.

Example for generating a
computer key:

http://quicklicensemanager.com/QlmCusto
merSite/QlmWebActivation.aspx?is_avke
y=AXK80-60R00-GHJ3S-I862Y-1I1U
R-AQDV2&is_pcid=123;

Example for generating a
digitally signed license file:

http://quicklicensemanager.com/QlmCusto
merSite/QlmWebActivation.aspx?is_avke
y=AXK80-60R00-GHJ3S-I862Y-1I1U
R-AQDV2&is_pcid=123&is_file=1;

Page 192

http://quicklicensemanager.com/QlmCusto
http://quicklicensemanager.com/QlmCusto

Distribute your application
 The sections below describe the options to include the QLM required DLLs in your application.
Select the most appropriate option based on the type of setup that you use to deploy your application.

 Using the QLM .NET API from VB6 or unmanaged C++
 If you have included a reference to QlmLicenseLib.dll in your VB6, unmanaged C++ or any other non
.NET based application, your setup must perform the following operations:
32 bit applications

 Generate a type library to be refrenced by your code
 %windir%\Microsoft.NET\Framework\v2.0.50727\regasm.exe /tlb

"<fullpath>\QlmLicenseLib.dll"
 Register the QlmLicenseLib.dll as a COM object
 %windir%\Microsoft.NET\Framework\v2.0.50727\regasm.exe /codebase

"<fullpath>\QlmLicenseLib.dll"
 64 bit applications

 Generate a type library to be refrenced by your code
 "%windir%\Microsoft.NET\Framework64\v2.0.50727\regasm.exe" /tlb

"<fullpath>\QlmLicenseLib.dll"
 Register the QlmLicenseLib.dll as a COM object
 "%windir%\Microsoft.NET\Framework64\v2.0.50727\regasm.exe" /codebase

"<fullpath>\QlmLicenseLib.dll"

Page 193

Distribute your application using a manual procedure

 Manual steps to install Quick License Manager files
 If you are not using Windows Installer to distribute your application, the following files must be included
in your application:

IsLicense50.dll: not shared, to be installed in the same folder as your application
 QlmLicenseLib.dll: not shared, to be installed in the same folder as your application
QlmControls.dll: not shared, to be installed in the same folder as your application

If you are targeting x64 bit systems, you will need to conditionally install the proper IsLicense50.dll
depending on the target platform.
The x64 bit version of IsLicense50.dll is located in the Redistrib\x64 folder.
Application Type Files to include

Windows Forms .NET 2.0 or higher

redistrib\x86\IsLicense50.dll
redistrib\x64\IsLicense50.dll
redistrib\.net2.0\QlmLicenseLib.dll
redistrib\.net2.0\QlmControls.dll

ASP.NET 2.0 or higher
Excel 2003 or higher
MS-Access 2003 or higher
Outlook Add-in
VB6

redistrib\.net2.0\QlmLicenseLibEmb\QlmLicenseLi
b.dll
redistrib\.net2.0\QlmControls.dll

C++

redistrib\x86\IsLicense50.dll
redistrib\x64\IsLicense50.dll
redistrib\.net2.0\QlmLicenseLib.dll
redistrib\.net2.0\QlmControls.dll

Page 194

Localization
 The QLM .NET API calls may return messages relating the status of a license key validation. By default,
all messages returned by the QLM .NET API are in English. The QLM .NET API also supports many
languages such as Spanish, Italian and German messages. To configure your application to display the
proper message depending on the language of your customer's system, you need to:

 Locate the localization folders in the Quick License Manager "redistrib\Localization"" folder.
 When you deploy your application, copy these folders to the same location as the

QlmLicenseLib.dll
 For example, if your customer's system is running Spanish OS, copying the "es"" folder will result

in the Spanish resources to be automatically used.
Alternatively, if you would like to force a specific language, you need to add the following call to your
application prior to initializing any UI:
System.Threading.Thread.CurrentThread.CurrentUICulture = new
System.Globalization.CultureInfo("es-ES");
Additionally, the QLM .NET Controls as well as the QLM License Wizard are localized. The
QlmControl.resources.dll contains the localized resources for the QlmControls.dll whereas
QlmLicenseWizard.resources.dll contains the localized resources for the QLM License Wizard.

Page 195

Troubleshooting License Server
 If you have errors connecting to the License Server, check the following troubleshooting tips:

 Try to connect to the License Server from the browse by typing the following URL in the
browser: http://server/qlm/qlmservice.asmx

 Determine the credentials of the user running the virtual directory. If you have installed the QLM
License Server using the QlmLicenseServerSetup.exe, an application pool was created called
Quick License Manager. The application pool runs by default with the credentials of the
NETWORK SERVICE account. The NETWORK SERVICE account will therefore need
Modify permissions on the following folders:
o C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files
o C:\Windows\Temp
o C:\Program Files\Soraco\QuickLicenseMgr\QlmWebSvc\Db

 If you have installed the QLM License Server manually and have not created an application pool,
make sure that the anonymous user (IUSR_XXX and IWAM_XXX) have Modify permissions
on the following folders:
o C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files
o C:\Windows\Temp
o C:\Program Files\Soraco\QuickLicenseMgr\QlmWebSvc\Db (or wherever you have

installed the database file).
 If you are using MS-Access as a database, verify that the qlm.accdb file on the web server is not

read-only. Additionally, verify that the user configured in the IIS QLM virtual directory has Write
privileges on the folder where the qlm.accdb file is located. If you are using an Application Pool
(recommended), verify that the user who is defined in the Identity tab of the Application Pool has
Write privileges on the folder where qlm.accdb is located.

 Verify that the communicationEncryptionKey and adminEncryptionKey between the client and
the License Server match. In the License Server, edit the web.config and note the value of
communicationEncryptionKey and adminEncryptionKey. In the QLM Console, click on Manage
Keys, select License Server / Sites then on the Encryption Keys tab, verify that both values
match.

Page 196

http://server/qlm/qlmservice.asmx

QLM API Reference

The QLM API is organized in 4 different categories:
 The Server Application API includes all methods

that you invoke from your application and that
communicate with the QLM License Server.

 The License Server Management API includes
all methods that are aministrative type of functions
that you typically invoke from your server or from
a third-party process in order to integrate QLM
with 3rd party tools.

 The Client Side API includes all methods that are
used to perform operations on license keys locally
on the end user system without contacting the
License Server.

 The License Server HTTP methods (REST)
includes all methods that can be invoked by simply
performing an http request (without using our API).
These methods are typically invoked from your
eCommerce provider during the purchasing
process. Note that all other methods mentioned
above cannot be called directly via SOAP. In
order to communicate with the QLM License
Server, you need to use the QLM API methods
that are exposed via the QLMLicenseLib.dll.

Page 197

License Server Application API
 The functions listed in this section are functions that you need to use within your application in order to
interface with the QLM License Server.
Before calling any of the functions below, you need to set the communicationEncryptionKey property of
the QlmLicense object to the value specified in your Site Properties (Manage Keys tab / Site). If you are
developing an application in .NET, it is highly recommeded that you obfuscate your code, and more
specifically that you encrypt sensitive strings such as the communicationEncryptionKey.
The QLM License Server provides a more extended set of APIs that you may want to use for managing
your license keys or for integrating licensing with any other internal process that you may have. The
extended set of functions is described under the License Server Management API
 section.

Page 198

ActivateLicense
 Activates a license key over the internet. To use a proxy server, you must set the UseProxyServer,
ProxyUser, ProxyDomain and ProxyPassword properties prior to calling this function.
C#: void ActivateLicense (string webServiceUrl, string activationKey, string computerID, string
computerName, string qlmVersion, string userData1, out string response)
Parameters

 webServiceUrl - URL to the QLM License Server.
activationKey - the license key to activate
computerID - the unique computer identifier
computerName - the name of the computer, not required but recommended.
qlmVersion - the version of the QLM Engine
userData1 - User data to associate with the license key
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <pckey>C06C4C90A497F091C2F080501000C076A0578E</pckey>
 <userCompany>My Company</userCompany>
 <userFullName>John Smith</userFullName>
 <userEmail>john@smith.com</userEmail>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>Details about the error</error>
 </QuickLicenseManager>

Page 199

ActivateLicenseByField
 Activates a license key over the internet, binds it to a specific user and returns a computer bound license
key. To use a proxy server, you must set the UseProxyServer, ProxyUser, ProxyDomain and
ProxyPassword properties prior to calling this function.
This function can be used to activate a license when the Activation Key is not known. For example, you
can use this function to activate a license based on an Order ID. To do so, you set the fieldName
argument to "OrderID" and set the fieldValue argument to the value of the Order ID.
By default, the supported fields are: OrderID and ReceiptID.
You can modify the list of supported fields by updating the activationByFieldAllowedFields setting in the
QLM License Server's web.config file.
C#: ActivateLicenseByField(string webServiceUrl, string fieldName, string fieldValue, string email,
string computerID, string computerName, string qlmVersion, string userData1, string affiliateID, out string
response)
Parameters

 webServiceUrl - URL to the QLM License Server
fieldName - Name of the field used to locate the Activation Key to activate
fieldName - fieldValue - Value of the field used to locate the Activation Key to activate
email - Email address of user that owns the license
computerID - Unique computer identfier
computerName - Name of computer
qlmVersion - Version of the QLM Engine to use
userData1 - User data to associate with the license key
affiliateID - ID of affiliate
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <pckey>C06C4C90A497F091C2F080501000C076A0578E</pckey>
 <userCompany>My Company</userCompany>
 <userFullName>John Smith</userFullName>
 <userEmail>john@smith.com</userEmail>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>Details about the error</error>
 </QuickLicenseManager>

Page 200

ActivateLicenseEx
 Activates a license key over the internet. To use a proxy server, you must set the UseProxyServer,
ProxyUser, ProxyDomain and ProxyPassword properties prior to calling this function.
C#: void ActivateLicenseEx (string webServiceUrl, string activationKey, string computerID, string
computerName, string qlmVersion, string userData1, string affiliateID, out string response)
Parameters

 webServiceUrl - URL to the QLM License Server.
activationKey - the license key to activate
computerID - the unique computer identifier
computerName - the name of the computer, not required but recommended.
qlmVersion - the version of the QLM Engine
userData1 - User data to associate with the license key
affiliateID - ID of affiliate
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <pckey>C06C4C90A497F091C2F080501000C076A0578E</pckey>
 <userCompany>My Company</userCompany>
 <userFullName>John Smith</userFullName>
 <userEmail>john@smith.com</userEmail>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>Details about the error</error>
 </QuickLicenseManager>

Page 201

ActivateLicenseDialog
 Creates a form for the user to enter his contact information and the activation key. When submitted, the
user is added to the database and his license is activated.
C#: public bool ActivateLicenseDialog(string webServiceUrl, string computerID, string userData1,
Control parentWindow, out string response)
Parameters

 webServiceUrl - URL to the QLM License Server.
computerID - Unique identifier for the computer
userData1 - user data to associate to this license
parentWindow - parent of the activation form window
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <pckey>C06C4C90A497F091C2F080501000C076A0578E</pckey>
 <userCompany>My Company</userCompany>
 <userFullName>John Smith</userFullName>
 <userEmail>john@smith.com</userEmail>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>Details about the error</error>
 </QuickLicenseManager>

Page 202

ActivateLicenseForUser
 Activates a license key over the internet, binds it to a specific user and returns a computer bound license
key. To use a proxy server, you must set the UseProxyServer, ProxyUser, ProxyDomain and
ProxyPassword properties prior to calling this function.
C#: ActivateLicenseForUser(string webServiceUrl, string activationKey, string email, string
computerID, string computerName, string qlmVersion, string userData1, string affiliateID, out string
response)
Parameters

 webServiceUrl - URL to the QLM License Server
activationKey - Activation key
email - Email address of user that owns the license
computerID - Unique computer identfier
computerName - Name of computer
qlmVersion - Version of the QLM Engine to use
userData1 - User data to associate with the license key
affiliateID - ID of affiliate
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <pckey>C06C4C90A497F091C2F080501000C076A0578E</pckey>
 <userCompany>My Company</userCompany>
 <userFullName>John Smith</userFullName>
 <userEmail>john@smith.com</userEmail>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>Details about the error</error>
 </QuickLicenseManager>

Page 203

AddUser
 Adds a new user. To use a proxy server, you must set the UseProxyServer, ProxyUser, ProxyDomain
and ProxyPassword properties prior to calling this function.
C#: void AddUser(string webServiceUrl, string customerName, string customerEmail, string
customerPhone, string customerFax, string customerMobile, string customerCompany, string
customerAddress1, string customerAddress2, string customerCity, string customerState, string
customerZip, string customerCountry, string customerIP, string customerNotes, bool includeInMailList,
out string response)
Parameters

 webServiceUrl - URL to the QLM License Server
customerName - Full Name
customerEmail - Email address
customerPhone - Phone number
customerFax - Fax number
customerMobile - Mobile phone number
customerCompany - Company name
customerAddress1 - Address 1
customerAddress2 - Address 2
customerCity - City
customerState - State
customerZip - Zip Code
customerCountry - Country
customerIP - IP Address
customerNotes - Notes
includeInMailList - Include in mail list
webServiceUrl - URL to the QLM License Server.
activationKey - the license key to activate
computerID - the unique computer identifier
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <result>Customer ABC was added successfully.".</result>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>Details about the error</error>
 </QuickLicenseManager>

Page 204

AddUserEx2
 Adds a new user.
C#: bool AddUserEx2(string webServiceUrl, IQlmCustomerInfo customerInfo, bool updateIfExists,
out string response);
Parameters

 webServiceUrl - URL to the QLM License Server
customerInfo - customer to add
updateIfExists - update the customer information if the customer already exists in the database
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <result>Customer ABC was added successfully.".</result>
 <userID>99</userID>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>Details about the error</error>
 </QuickLicenseManager>

Page 205

CreateComputerBoundTrialKey
 Creates a trial activation key, then automatically activates it on the server side and returns the computer
bound license key. This function is useful if you want to create trial keys from within your application. The
trial period is controlled by the trialDuration Server Property. Server Properties can be set from the
Manage Keys / Sites / Server Properties
 page.
Prior to calling this function, you must call DefineProduct and set the CommunicationEncryptionKey
 property.
If you want to prevent calls to this function, set the enableCreateComputerBoundTrial Server
Property to false. The Server Properties can be set from the Manage Keys / Sites / Server
Properties
 page.
C#: string CreateComputerBoundTrialKey(string webServiceUrl, string computerID, string
computerName, string email, string features, string affiliateID, string userData1, out string response)
Parameters

 webServiceUrl - URL to the QLM License Server.
computerID- Unique identifier of the computer being activated.
computerName - Friendly name of the computer being activated.
email - email address to associate to the license key - may be empty
features - Semi comma separated list of feature sets and their corresponding values.
 Example: 0:1;1:2;2:3;3:6 - enables feature 1 in feature set 0, feature 2 in feature set 1,
feature 1+2 (3) in feature set 4 and features 1+2+3 (6) in feature set 3.
affiliateID - ID of affiliate
userData1 - user data to associate to this license
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <pckey>C06C4C90A497F091C2F080501000C076A0578E</pckey>
 <userCompany>My Company</userCompany>
 <userFullName>John Smith</userFullName>
 <userEmail>john@smith.com</userEmail>
 </QuickLicenseManager>
Return value: The returned value is the computer bound license key (ComputerKey).

Page 206

GetCustomerInfo
 Retrieves information about the customer associated to the specified activation key.
C#: IQlmCustomerInfo GetCustomerInfo (string webServiceUrl, string activationKey)
Parameters

 webServiceUrl - URL to the QLM License Server.
activationKey - activaiton key of the customer

C# Example
 IQlmCustomerInfo customer = license.GetCustomerInfo (webServiceUrl,

"A2GM0-50K00-PYU3F-784HH-1U1V5T");

Page 207

GetDashboardInfo
 Connects to the License Server and gets dashboard type information related to a site. You need to set
the QlmLicense.AdminEncryptionKey property to call this function. To use a proxy server, you must set
the UseProxyServer, ProxyUser, ProxyDomain and ProxyPassword properties prior to calling this
function.
To retrieve a specific license key related information, call GetDashboardLicenseInfo.
C#: IDashboardInfo GetDashboardInfo (string webServiceUrl, int recentOrders, int
upcomingRenewals)
Parameters

 webServiceUrl - URL to the QLM License Server.
dashboardInfo - Dashboard info class that receives all the relevant information from the server
recentOrders - Define the number of days prior to today that the recent orders query returns
upcomingRenewals - Define the number of days after today that the upcoming renewals query
returns

Return
 After calling GetDashboardInfo, the following IDashboardInfo properties will be set: TotalOrders,
TotalCustomers, TodaysOrders, YesterdaysOrders, RecentOrders, UpcomingRenewals
Example:

 QlmLicense license = new QlmLicense ();
license.DefineProduct(1, "Demo", 1, 0, "DemoKey",
"{24EAA3C1-3DD7-40E0-AEA3-D20AA17A6005}");
DashboardInfo di = license.GetDashboardInfo
("https://qlm3.net/qlmdemov16/QlmLicenseServer/qlmservice.asmx", 10, 30);
if (ret == true)
{

 MessageBox.Show ("Total Licenses: " + di.TotalOrders);
}

Page 208

GetDashboardLicenseInfo
 Connects to the License Server and gets dashboard type information related to the specified license key.
To use a proxy server, you must set the UseProxyServer, ProxyUser, ProxyDomain and ProxyPassword
properties prior to calling this function.
C#: IDashboardLicenseInfo GetDashboardLicenseInfo (string webServiceUrl, string activationKey,
string computerKey, string computerID)
Parameters

 webServiceUrl - URL to the QLM License Server.
activationKey - Activation key
computerKey - Computer bound license key
computerID - Unique computer identifier

Return
 Returns an IDashboardLicenseInfo instance.
Example:

 QlmLicense license = new QlmLicense ();
license.DefineProduct(1, "Demo", 1, 0, "DemoKey",
"{24EAA3C1-3DD7-40E0-AEA3-D20AA17A6005}");
IDashboardLicenseInfo di = license.GetDashboardLicenseInfo
("https://qlm3.net/qlmdemov16/QlmLicenseServer/qlmservice.asmx", "AXXX", "UXXX",
Environment.MachineName);
if (ret == true)
{

 MessageBox.Show ("Total Licenses: " + di.TotalLicenses);
}

Page 209

GetLatestVersion
 Gets the latest version of the specified product.
C#: string GetLatestVersion (string webServiceUrl, int productID, int majorVersion, int minorVersion,
out string downloadUrl, out string notes, out string response)
Parameters

 webServiceUrl - URL to the QLM License Server.
productID - ID of the product.
majorVersion- Major version of the product.
minorVersion - Minor version of the product.
downloadUrl - returns the url to download the latest version.
notes - returns notes about the latest version.
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
Returns the value of the latest version.
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <result>The latest version is xyz.</result>
 <latestVersion>xyz</latestVersion>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>Details about the error</error>
 </QuickLicenseManager>

Page 210

GetLicenseInfo
 Retrieves information about an Activation Key.
C#: ILicenseInfo GetLicenseInfo (string webServiceUrl, string activationKey, bool historyTable, out
string dataSet, out string response)
Parameters

 webServiceUrl - URL to the QLM License Server.
activationKey - activation key of the customer
historyTable - search for the activation key in the history table
dataSet - data set returned by the server.
response - result of the call to the server.

C# Example
 ILicenseInfo li = license.GetLicenseInfo (webServiceUrl,

"A2GM0-50K00-PYU3F-784HH-1U1V5T", false, out dataSet out response);

Page 211

GetOrder
 Connects to the License Server and gets the status of an order. To use a proxy server, you must set the
UseProxyServer, ProxyUser, ProxyDomain and ProxyPassword properties prior to calling this function.
C#: DataRowCollection GetOrder (string webServiceUrl, string orderID, out string response)
Parameters

 webServiceUrl - URL to the QLM License Server.
orderID - ID of the order
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <result>Order status updated successfully.</result>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>The order id is not valid</error>
 </QuickLicenseManager>

Return
 DataRowCollection containing all the data associated with this order.
Example:

 QlmLicense license = new QlmLicense ();
license.DefineProduct(1, "Demo", 1, 0, "DemoKey",
"{24EAA3C1-3DD7-40E0-AEA3-D20AA17A6005}");
string response = string.Empty;
DataRowCollection drc = license.GetOrder
("https://qlm3.net/qlmdemov16/QlmLicenseServer/qlmservice.asmx", 1234, out response);
if (drc != null)
{
 foreach (DataRow dr in drc)
 {
 string activationKey = dr["ActivationKey"];
 }
}

Page 212

GetProductInfo
 Gets information about a product from the server.
C#: IProductInfo GetProductInfo(string webServiceUrl, int productID, int majorVersion, int
minorVersion)
Parameters

 webServiceUrl - URL to the QLM License Server.
productID - ID of the product.
majorVersion- Major version of the product.
minorVersion - Minor version of the product.
Returns an IProductInfo interface with the following properties:
 ReleaseDate
 ProductName
 ProductID
 MajorVersion
 MinorVersion
 Features
 LatestVersion
 LatestVersionUrl
 LatestVersionNotes

Page 213

GetSubscriptionExpiryDate
 Connects to the License Server and gets the subscription expiry date associated to the license. To use a
proxy server, you must set the UseProxyServer, ProxyUser, ProxyDomain and ProxyPassword
properties prior to calling this function.
C#: DateTime GetSubscriptionExpiryDate(string webServiceUrl, string activationKey, string
computerKey, out string response)
Parameters

 webServiceUrl - URL to the QLM License Server.
activationKey - The activation key to retrieve the subscription expiry date for. If this argument is
set, you do not need to set the computerKey argument.
computerKey - The computer key to retrieve the subscription expiry date for. If this argument is
set, you do not need to set the activationKey argument.
response - The xml fragment returned by the License Server.

Page 214

GetUserData
 Gets the UserData1 field for a specific license key.
C#: string GetUserData (string webServiceUrl, string activationKey, out string response)
Parameters

 webServiceUrl - URL to the QLM License Server.
activationKey - activation key to query.
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
Returns the value of the userData1 field.
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <result>Successfully executed query using filter...</result>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>Details about the error</error>
 </QuickLicenseManager>

Page 215

GetMaintenancePlanRenewalDate
 Gets the maintenance plan renewal date.
C#: DateTime GetMaintenancePlanRenewalDate (string webServiceUrl, string activationKey)
Parameters

 webServiceUrl - URL to the QLM License Server.
activationKey - the activation key of the record.

Note that the date returned is a UTC date. In the event the maintenance plan date is not set, the return
value is set to DateTime.MinValue which is Jan 1 0001.

Page 216

GetMaintenancePlanRenewalDateByComputerKey
 Gets the maintenance plan renewal date given a computer key.
C#: DateTime GetMaintenancePlanRenewalDateByComputerKey (string webServiceUrl, string
computerKey)
Parameters

 webServiceUrl - URL to the QLM License Server.
computerKey - the computer key of the record.

Note that the date returned is a UTC date. In the event the maintenance plan date is not set, the return
value is set to DateTime.MinValue which is Jan 1 0001.

Page 217

GetRemainingActivations
 Connects to the License Server and determines how many activations are still available for the given
activation key. To use a proxy server, you must set the UseProxyServer, ProxyUser, ProxyDomain and
ProxyPassword properties prior to calling this function.
C#: int GetRemainingActivations(string webServiceUrl, string activationKey)
Parameters

 webServiceUrl - URL to the QLM License Server.
activationKey - the license key to verify

Page 218

GetUserDataFromActivationLog
 Gets the UserData1 field for a specific license key from the ActivationLog table. The ActivationLog
table is used when a license key is of type MultipleActivationsKey and more than 1 seat is associated to
the license key.
C#: string GetUserDataFromActivationLog (string webServiceUrl, string activationKey, stromg
computerID, out string response)
Parameters

 webServiceUrl - URL to the QLM License Server.
activationKey - activation key to query.
computerID - Unique identifier of the computer on which the license was activated.
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
Returns the value of the userData1 field.
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <result>Successfully executed query using filter...</result>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>Details about the error</error>
 </QuickLicenseManager>

Page 219

IsIllegalComputer
 Connects to the License Server and checks if the current computer is properly registered in the QLM
database. To use a proxy server, you must set the UseProxyServer, ProxyUser, ProxyDomain and
ProxyPassword properties prior to calling this function.
C#: void IsIllegalComputer (string webServiceUrl, string activationKey, string computerKey, string
computerID, string computerName, string qlmVersion, out string response)
Parameters

 webServiceUrl - URL to the QLM License Server.
activationKey - the activation key
computerKey - the computer bound key
computerID - the computer identifier
computerName - the computer name
qlmVersion - the version of the QLM engine
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <result>The activation key is valid.</result>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>The activation key is not valid</error>
 </QuickLicenseManager>

Page 220

IsLicenseKeyActivated
 Connects to the License Server and checks if the provided license key has been activated on the
specified system. To use a proxy server, you must set the UseProxyServer, ProxyUser, ProxyDomain
and ProxyPassword properties prior to calling this function.
C#: bool IsLicenseKeyActivated (string webServiceUrl, string activationKey, string computerID)
Parameters

 webServiceUrl - URL to the QLM License Server.
activationKey - the license key to verify
computerID - the computerID to verify

Page 221

IsLicenseKeyRevoked
 Connects to the License Server and checks if the provided license key is valid. To use a proxy server,
you must set the UseProxyServer, ProxyUser, ProxyDomain and ProxyPassword properties prior to
calling this function.
C#: bool IsLicenseKeyRevoked (string webServiceUrl, string activationKey)
Parameters

 webServiceUrl - URL to the QLM License Server.
activationKey - the license key to activate

Page 222

IsLicenseKeyValid
 Connects to the License Server and checks if the provided license key is valid. To use a proxy server,
you must set the UseProxyServer, ProxyUser, ProxyDomain and ProxyPassword properties prior to
calling this function.
C#: void IsLicenseKeyValid (string webServiceUrl, string activationKey, out string response)
Parameters

 webServiceUrl - URL to the QLM License Server.
activationKey - the license key to activate
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <result>The activation key is valid.</result>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>The activation key is not valid</error>
 </QuickLicenseManager>

Page 223

Ping
 Pings the License Server and returns the UTC date on the server.
C#: bool Ping(string webServiceUrl, out string response, out DateTime serverDate)
Parameters

 webServiceUrl - URL to the QLM License Server.
response - the response from the server
serverDate - the date/time on the server in UTC.

If the function returns true, the server is accessible.

Page 224

ReleaseLicense
 Releases a license key over the internet. To use a proxy server, you must set the UseProxyServer,
ProxyUser, ProxyDomain and ProxyPassword properties prior to calling this function.
You can control how many times a user can release a license with the following Server Properties:

 maxReleaseCount: The maximum number of times an end-user can release a license.
 maxReleasePeriodInDays: When counting the number of released licenses, only count the ones

that have been released in the past "maxReleasePeriodInDays" days. For example, if you want to
allow a user to release a license twice per month, set maxReleasePeriodInDays to 30 and
maxReleaseCount to 2.

 maxReleasePerClient: When counting the number of released licenses for a given activation key,
count only the ones associated to a specific client. By default, QLM counts all the released
licenses for a given activation regardless of the client system.

C#: void ReleaseLicense (string webServiceUrl, string activationKey, string computerID, out string
response)
Parameters

 webServiceUrl - URL to the QLM License Server.
activationKey - the license key to activate
computerID - the unique computer identifier
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <result>ActivationKey A162DCF05C30D371A2D0E0461040A0 has been

released.</result>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>Details about the error</error>
 </QuickLicenseManager>

Page 225

SetUserData
 Sets the user data field associated to an activation key.
C#: bool SetUserData (string webServiceUrl, string activationKey, string userData, out string
errorMessage)
Parameters

 webServiceUrl - URL to the QLM License Server.
activationKey - the activation key.
userData - the user data to set
errorMessage - returned error message

If the function succeeds, the return value is true.If the function fails, the return is value is false. The
errorMessage contains details about the error.

Page 226

SetUserDataInActivationLog
 Sets the user data field associated to an activation key and a computer ID. This method should be used
for multiple activations keys.
C#: bool SetUserDataInActivationLog (string webServiceUrl, string activationKey, string
computerID, string userData, out string errorMessage)
Parameters

 webServiceUrl - URL to the QLM License Server.
activationKey - the activation key.
computerID - the unique identifier of the system.
userData - the user data to set
errorMessage - returned error message

If the function succeeds, the return value is true.If the function fails, the return is value is false. The
errorMessage contains details about the error.

Page 227

SubscribeToMailList
 Subscribes or unsubscribes a user from the mail list. To use a proxy server, you must set the
UseProxyServer, ProxyUser, ProxyDomain and ProxyPassword properties prior to calling this function.
C#: bool SubscribeToMailList (string webServiceUrl, string customerEmail, bool includeInMailList,
out string response)
Http:
http://server/qlm/qlmservice.asmx/SubscribeToMailListHttp?is_email=user@cie.com&is_include=1
;
Parameters

 webServiceUrl - URL to the QLM License Server.
customerEmail - email address of customer
includeInMailList - true to subscribe, false to unsubscribe
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <result>Succesfully subscribed customer.</result>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>Details about the error</error>
 </QuickLicenseManager>

Page 228

http://server/qlm/qlmservice.asmx/SubscribeToMailListHttp?is_email=user@cie.com&is_include=1

UpdateUser
 Updates the data of an existing user. To use a proxy server, you must set the UseProxyServer,
ProxyUser, ProxyDomain and ProxyPassword properties prior to calling this function.
C#: void UpdateUser(string webServiceUrl, string previousEmail, string customerName, string
customerEmail, string customerPhone, string customerFax, string customerMobile, string
customerCompany, string customerAddress1, string customerAddress2, string customerCity, string
customerState, string customerZip, string customerCountry, string customerIP, string customerNotes,
bool includeInMailList, out string response)
Parameters

 webServiceUrl - URL to the QLM License Server
previousEmail - Email address of the existing user to update
customerName - Full Name
customerEmail - Email address
customerPhone - Phone number
customerFax - Fax number
customerMobile - Mobile phone number
customerCompany - Company name
customerAddress1 - Address 1
customerAddress2 - Address 2
customerCity - City
customerState - State
customerZip - Zip Code
customerCountry - Country
customerIP - IP Address
customerNotes - Notes
includeInMailList - Include in mail list
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <result>Customer ABC was updated successfully.".</result>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>Details about the error</error>
 </QuickLicenseManager>

Page 229

License Server Management API
 The QLM License Server provides an extended set of functions that you may want to use for managing
your license keys or integrating licensing with any other internal process that you may have. This extended
set of functions should typically not be part of your application but rather called from a server or a system
that your end-user does not have access to.
Before calling any of the functions below, you need to set the adminEncryptionKey property of the
QlmLicense object to the value specified in your Site Properties (Manage Keys tab / Site). If you are
developing an application in .NET, it is highly recommeded that you obfuscate your code, and more
specifically that you encrypt sensitive strings such as the adminEncryptionKey.

Page 230

CreateActivationKey
 Creates an activation key over the internet. To use a proxy server, you must set the UseProxyServer,
ProxyUser, ProxyDomain and ProxyPassword properties prior to calling this function.
Note that to call this function, you must update the web.config on the web server as follows:
<setting name="enableCreateActivationKey" serializeAs="String">
<value>True</value>
</setting>
C#: void CreateActivationKey(string webServiceUrl, string email, int features, int quantity, bool
useMultipleActivationsKey, string qlmVersion, string vendor, string userData1, string affiliateID, out
string response)
Parameters

 webServiceUrl - URL to the QLM License Server.
email - email address to associate to the license key - may be empty
features - or'ed value of the features to enable
quantity - the number of licenses to embed in the key
useMultipleActivationsKey - if set to true and quantity > 1, one license key will be generated for
all required licenses. The number of licenses will be embedded in the license key
qlmVersion - the version of the QLM Engine
vendor - the eCommerce vendor to use when generating the key
userData1 - user data to associate to this license
affiliateID - ID of affiliate
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <keys>A062E-9D0CC-6DC80-0D6A0-E0701-000A0;A062E-9D0CC-6DC80-0D6A0-

E0701-000A0</keys>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>Details about the error</error>
 </QuickLicenseManager>

Page 231

CreateActivationKeyEx
 Creates an activation key over the internet. To use a proxy server, you must set the UseProxyServer,
ProxyUser, ProxyDomain and ProxyPassword properties prior to calling this function.
Note that to call this function, you must update the web.config on the web server as follows:
<setting name="enableCreateActivationKey" serializeAs="String">
<value>True</value>
</setting>
C#: void CreateActivationKeyEx(string webServiceUrl, string email, int [] features, int quantity, bool
useMultipleActivationsKey, string qlmVersion, string vendor, string userData1, string affiliateID, out
string response)
Parameters

 webServiceUrl - URL to the QLM License Server.
email - email address to associate to the license key - may be empty
features - array of feature sets. each feature set is an or'ed value of the features to enable in the
feature set
quantity - the number of licenses to embed in the key
useMultipleActivationsKey - if set to true and quantity > 1, one license key will be generated for
all required licenses. The number of licenses will be embedded in the license key
qlmVersion - the version of the QLM Engine
vendor - the eCommerce vendor to use when generating the key
userData1 - user data to associate to this license
affiliateID - ID of affiliate
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <keys>A062E-9D0CC-6DC80-0D6A0-E0701-000A0;A062E-9D0CC-6DC80-0D6A0-

E0701-000A0</keys>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>Details about the error</error>
 </QuickLicenseManager>

Page 232

CreateActivationKeyWithExpiryDate
 Creates an activation key with an expiry date over the internet. To use a proxy server, you must set the
UseProxyServer, ProxyUser, ProxyDomain and ProxyPassword properties prior to calling this function.
Note that to call this function, you must update the web.config on the web server as follows:
<setting name="enableCreateActivationKey" serializeAs="String">
<value>True</value>
</setting>
C#: void CreateActivationKeyWithExpiryDate(string webServiceUrl, string email, int features, int
quantity, bool useMultipleActivationsKey, string qlmVersion, string vendor, string userData1, string
affiliateID, DateTime expiryDate, int expiryDuration, out string response)
Parameters

 webServiceUrl - URL to the QLM License Server.
email - email address to associate to the license key - may be empty
features - or'ed value of the features to enable
quantity - the number of licenses to embed in the key
useMultipleActivationsKey - if set to true and quantity > 1, one license key will be generated for
all required licenses. The number of licenses will be embedded in the license key
qlmVersion - the version of the QLM Engine
vendor - the eCommerce vendor to use when generating the key
userData1 - user data to associate to this license
affiliateID - ID of affiliate
expiryDate - Expiry date of the key
expiryDuration - Expiry duration of the key
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <keys>A062E-9D0CC-6DC80-0D6A0-E0701-000A0;A062E-9D0CC-6DC80-0D6A0-

E0701-000A0</keys>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>Details about the error</error>
 </QuickLicenseManager>

Page 233

CreateActivationKeyWithExpiryDateEx
 Creates an activation key with an expiry date over the internet. To use a proxy server, you must set the
UseProxyServer, ProxyUser, ProxyDomain and ProxyPassword properties prior to calling this function.
Note that to call this function, you must update the web.config on the web server as follows:
<setting name="enableCreateActivationKey" serializeAs="String">
<value>True</value>
</setting>
C#: void CreateActivationKeyWithExpiryDateEx(string webServiceUrl, string email, int [] features, int
quantity, bool useMultipleActivationsKey, string qlmVersion, string vendor, string userData1, string
affiliateID, DateTime expiryDate, int expiryDuration, out string response)
Parameters

 webServiceUrl - URL to the QLM License Server.
email - email address to associate to the license key - may be empty
features - array of feature sets. each feature set is an or'ed value of the features to enable in the
feature set
quantity - the number of licenses to embed in the key
useMultipleActivationsKey - if set to true and quantity > 1, one license key will be generated for
all required licenses. The number of licenses will be embedded in the license key
qlmVersion - the version of the QLM Engine
vendor - the eCommerce vendor to use when generating the key
userData1 - user data to associate to this license
affiliateID - ID of affiliate
expiryDate - Expiry date of the key
expiryDuration - Expiry duration of the key
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <keys>A062E-9D0CC-6DC80-0D6A0-E0701-000A0;A062E-9D0CC-6DC80-0D6A0-

E0701-000A0</keys>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>Details about the error</error>
 </QuickLicenseManager>

Page 234

CreateActivationKeyWithExpiryDateEx2
 Creates an activation key with an expiry date over the internet. To use a proxy server, you must set the
UseProxyServer, ProxyUser, ProxyDomain and ProxyPassword properties prior to calling this function.
Note that to call this function, you must update the web.config on the web server as follows:
<setting name="enableCreateActivationKey" serializeAs="String">
<value>True</value>
</setting>
C#: void CreateActivationKeyWithExpiryDateEx2(string webServiceUrl, string email, string features,
int numSeats, bool useMultipleActivationsKey, string qlmVersion, string vendor, string userData1, string
affiliateID, DateTime expiryDate, int expiryDuration, out string response)
Parameters

 webServiceUrl - URL to the QLM License Server.
email - email address to associate to the license key - may be empty
features - Semi comma separated list of feature sets and their corresponding enabled features.
 Example: 0:1;1:2;2:3;3:6 - enables feature 1 in feature set 0, feature 2 in feature set 1,
feature 1+2 (3) in feature set 4 and features 1+2+3 (6) in feature set 3.
quantity - the number of licenses to embed in the key
useMultipleActivationsKey - if set to true and quantity > 1, one license key will be generated for
all required licenses. The number of licenses will be embedded in the license key
qlmVersion - the version of the QLM Engine
vendor - the eCommerce vendor to use when generating the key
userData1 - user data to associate to this license
affiliateID - ID of affiliate
expiryDate - Expiry date of the key
expiryDuration - Expiry duration of the key
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <keys>A062E-9D0CC-6DC80-0D6A0-E0701-000A0;A062E-9D0CC-6DC80-0D6A0-

E0701-000A0</keys>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>Details about the error</error>
 </QuickLicenseManager>

Page 235

CreateActivationKeyWithExpiryDateEx3
 Creates an activation key with an expiry date over the internet. To use a proxy server, you must set the
UseProxyServer, ProxyUser, ProxyDomain and ProxyPassword properties prior to calling this function.
Note that to call this function, you must update the web.config on the web server as follows:
<setting name="enableCreateActivationKey" serializeAs="String">
<value>True</value>
</setting>
C#: void CreateActivationKeyWithExpiryDateEx3(string webServiceUrl, string email, string features,
int numKeysToCreate, int numSeats, int numFloatingSeats, bool useMultipleActivationsKey, string
qlmVersion, string vendor, string userData1, string affiliateID, DateTime expiryDate, int expiryDuration,
bool maintenance, bool generic, out string response)
Parameters

 webServiceUrl - URL to the QLM License Server.
email - email address to associate to the license key - may be empty
features - Semi comma separated list of feature sets and their corresponding values.
 Example: 0:1;1:2;2:3;3:6 - enables feature 1 in feature set 0, feature 2 in feature set 1,
feature 1+2 (3) in feature set 4 and features 1+2+3 (6) in feature set 3.
numKeysToCreate - the number of licenses to create. Use this option to create large batches of
license keys.
numSeats- the number of licenses to embed in the key. This controls how many activations are
allowed per key.
numFloatingSeats- the number of floating seats for concurrent licensing (requires QLM
Enterprise).
useMultipleActivationsKey - if set to true and quantity > 1, one license key will be generated for
all required licenses. The number of licenses will be embedded in the license key
qlmVersion - the version of the QLM Engine
vendor - the eCommerce vendor to use when generating the key
userData1 - user data to associate to this license
affiliateID - ID of affiliate
expiryDate - Expiry date of the key
expiryDuration - Expiry duration of the key
maintenance - set to true to enable the maintenance plan for this license
generic - set to true to create a generic license key. Generic license keys are designed for
enterprise customers who purchase hundreds of licenses and do not want to have to activate
licenses on every single computer. They activate a single license and get back a Generic
Computer Key. Then on every other computer in the organization, they use the Generic
Computer Key.
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <keys>A062E-9D0CC-6DC80-0D6A0-E0701-000A0;A062E-9D0CC-6DC80-0D6A0-

E0701-000A0</keys>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>Details about the error</error>
 </QuickLicenseManager>

Page 236

CreateActivationKeyWithExpiryDateEx4
 Creates an activation key with an expiry date over the internet. To use a proxy server, you must set the
UseProxyServer, ProxyUser, ProxyDomain and ProxyPassword properties prior to calling this function.
Note that to call this function, you must update the web.config on the web server as follows:
<setting name="enableCreateActivationKey" serializeAs="String">
<value>True</value>
</setting>
C#: void CreateActivationKeyWithExpiryDateEx4(string webServiceUrl, string email, string features,
int numKeysToCreate, int numSeats, int numFloatingSeats, bool useMultipleActivationsKey, string
qlmVersion, string vendor, string userData1, string affiliateID, DateTime expiryDate, int expiryDuration,
bool maintenance, bool generic, ELicenseModel licenseModel, out string response)
Parameters

 webServiceUrl - URL to the QLM License Server.
email - email address to associate to the license key - may be empty
features - Semi comma separated list of feature sets and their corresponding values.
 Example: 0:1;1:2;2:3;3:6 - enables feature 1 in feature set 0, feature 2 in feature set 1,
feature 1+2 (3) in feature set 4 and features 1+2+3 (6) in feature set 3.
numKeysToCreate - the number of licenses to create. Use this option to create large batches of
license keys.
numSeats- the number of licenses to embed in the key. This controls how many activations are
allowed per key.
numFloatingSeats- the number of floating seats for concurrent licensing (requires QLM
Enterprise).
useMultipleActivationsKey - if set to true and quantity > 1, one license key will be generated for
all required licenses. The number of licenses will be embedded in the license key
qlmVersion - the version of the QLM Engine
vendor - the eCommerce vendor to use when generating the key
userData1 - user data to associate to this license
affiliateID - ID of affiliate
expiryDate - Expiry date of the key
expiryDuration - Expiry duration of the key
maintenance - set to true to enable the maintenance plan for this license
generic - set to true to create a generic license key. Generic license keys are designed for
enterprise customers who purchase hundreds of licenses and do not want to have to activate
licenses on every single computer. They activate a single license and get back a Generic
Computer Key. Then on every other computer in the organization, they use the Generic
Computer Key.
licenseModel - the license model associated to this license key. The license model can be
Permanent | Trial | Subscription
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <keys>A062E-9D0CC-6DC80-0D6A0-E0701-000A0;A062E-9D0CC-6DC80-0D6A0-

E0701-000A0</keys>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>Details about the error</error>

Page 237

 </QuickLicenseManager>

Page 238

CreateActivationKeyWithExpiryDateEx5
 Creates an activation key with an expiry date over the internet. To use a proxy server, you must set the
UseProxyServer, ProxyUser, ProxyDomain and ProxyPassword properties prior to calling this function.
Note that to call this function, you must update the web.config on the web server as follows:
<setting name="enableCreateActivationKey" serializeAs="String">
<value>True</value>
</setting>
C#: void CreateActivationKeyWithExpiryDateEx5(string webServiceUrl, string email, string features,
int numKeysToCreate, int numSeats, int numFloatingSeats, bool useMultipleActivationsKey, string
qlmVersion, string vendor, string userData1, string affiliateID, DateTime expiryDate, int expiryDuration,
bool maintenance, bool generic, ELicenseModel licenseModel, string comment, out string response)
Parameters

 webServiceUrl - URL to the QLM License Server.
email - email address to associate to the license key - may be empty
features - Semi comma separated list of feature sets and their corresponding values.
 Example: 0:1;1:2;2:3;3:6 - enables feature 1 in feature set 0, feature 2 in feature set 1,
feature 1+2 (3) in feature set 4 and features 1+2+3 (6) in feature set 3.
numKeysToCreate - the number of licenses to create. Use this option to create large batches of
license keys.
numSeats- the number of licenses to embed in the key. This controls how many activations are
allowed per key.
numFloatingSeats- the number of floating seats for concurrent licensing (requires QLM
Enterprise).
useMultipleActivationsKey - if set to true and quantity > 1, one license key will be generated for
all required licenses. The number of licenses will be embedded in the license key
qlmVersion - the version of the QLM Engine
vendor - the eCommerce vendor to use when generating the key
userData1 - user data to associate to this license
affiliateID - ID of affiliate
expiryDate - Expiry date of the key
expiryDuration - Expiry duration of the key
maintenance - set to true to enable the maintenance plan for this license
generic - set to true to create a generic license key. Generic license keys are designed for
enterprise customers who purchase hundreds of licenses and do not want to have to activate
licenses on every single computer. They activate a single license and get back a Generic
Computer Key. Then on every other computer in the organization, they use the Generic
Computer Key.
licenseModel - the license model associated to this license key. The license model can be
Permanent | Trial | Subscription
comment - comment to be added to the license record
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <keys>A062E-9D0CC-6DC80-0D6A0-E0701-000A0;A062E-9D0CC-6DC80-0D6A0-

E0701-000A0</keys>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>

Page 239

 <error>Details about the error</error>
 </QuickLicenseManager>

Page 240

CreateActivationKeyWithExpiryDateEx6
 Creates an activation key with an expiry date over the internet. To use a proxy server, you must set the
UseProxyServer, ProxyUser, ProxyDomain and ProxyPassword properties prior to calling this function.
Note that to call this function, you must update the web.config on the web server as follows:
<setting name="enableCreateActivationKey" serializeAs="String">
<value>True</value>
</setting>
C#: void CreateActivationKeyWithExpiryDateEx6(string webServiceUrl, string email, string features,
int numKeysToCreate, int numSeats, int numFloatingSeats, bool useMultipleActivationsKey, string
qlmVersion, string vendor, string userData1, string affiliateID, DateTime expiryDate, int expiryDuration,
bool maintenance, bool generic, ELicenseModel licenseModel, string comment, EOrderStatus
orderStatus, out string response)
Parameters

 webServiceUrl - URL to the QLM License Server.
email - email address to associate to the license key - may be empty
features - Semi comma separated list of feature sets and their corresponding values.
 Example: 0:1;1:2;2:3;3:6 - enables feature 1 in feature set 0, feature 2 in feature set 1,
feature 1+2 (3) in feature set 4 and features 1+2+3 (6) in feature set 3.
numKeysToCreate - the number of licenses to create. Use this option to create large batches of
license keys.
numSeats- the number of licenses to embed in the key. This controls how many activations are
allowed per key.
numFloatingSeats- the number of floating seats for concurrent licensing (requires QLM
Enterprise).
useMultipleActivationsKey - if set to true and quantity > 1, one license key will be generated for
all required licenses. The number of licenses will be embedded in the license key
qlmVersion - the version of the QLM Engine
vendor - the eCommerce vendor to use when generating the key
userData1 - user data to associate to this license
affiliateID - ID of affiliate
expiryDate - Expiry date of the key
expiryDuration - Expiry duration of the key
maintenance - set to true to enable the maintenance plan for this license
generic - set to true to create a generic license key. Generic license keys are designed for
enterprise customers who purchase hundreds of licenses and do not want to have to activate
licenses on every single computer. They activate a single license and get back a Generic
Computer Key. Then on every other computer in the organization, they use the Generic
Computer Key.
licenseModel - the license model associated to this license key. The license model can be
Permanent | Trial | Subscription
comment - comment to be added to the license record
orderStatus - set the order status of the license to one of the allowed values: EInProgress |
EComplete | EUpgraded | EReleased
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <keys>A062E-9D0CC-6DC80-0D6A0-E0701-000A0;A062E-9D0CC-6DC80-0D6A0-

E0701-000A0</keys>
 </QuickLicenseManager>

Page 241

In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>Details about the error</error>
 </QuickLicenseManager>

Page 242

CreateActivationKeyWithExpiryDateEx7
 Creates an activation key with an expiry date over the internet. To use a proxy server, you must set the
UseProxyServer, ProxyUser, ProxyDomain and ProxyPassword properties prior to calling this function.
Note that to call this function, you must update the web.config on the web server as follows:
<setting name="enableCreateActivationKey" serializeAs="String">
<value>True</value>
</setting>
C#: void CreateActivationKeyWithExpiryDateEx7(string webServiceUrl, string email, int[] features, int
numKeysToCreate, int numSeats, int numFloatingSeats, bool useMultipleActivationsKey, string
qlmVersion, string vendor, string userData1, string affiliateID, DateTime expiryDate, int expiryDuration,
bool maintenance, bool generic, ELicenseModel licenseModel, string comment, EOrderStatus
orderStatus, string productProperties, out string response)
Parameters

 webServiceUrl - URL to the QLM License Server.
email - email address to associate to the license key - may be empty
features - features - 4 element array of features. Each element in the array represents a feature
set and the value of each element is the OR'ed value of all the enabled features in this feature set.
 For example:
  int[] features=new features[4];
  features[0] = 1 + 2 + 4; // In feature set 1, Feature 1, Feature 2 and Feature 4
are enabled
  features[1] = 1 + 4; // In feature set 2, Feature 1 and Feature 4 are enabled
  features[2] = 2 + 4 + 8; // In feature set 3, Feature 2, Feature 4 and Feature 8
are enabled
  features[3] = 0; // In feature set 4, no features are enabled
 
numKeysToCreate - the number of licenses to create. Use this option to create large batches of
license keys.
numSeats- the number of licenses to embed in the key. This controls how many activations are
allowed per key.
numFloatingSeats- the number of floating seats for concurrent licensing (requires QLM
Enterprise).
useMultipleActivationsKey - if set to true and quantity > 1, one license key will be generated for
all required licenses. The number of licenses will be embedded in the license key
qlmVersion - the version of the QLM Engine
vendor - the eCommerce vendor to use when generating the key
userData1 - user data to associate to this license
affiliateID - ID of affiliate
expiryDate - Expiry date of the key
expiryDuration - Expiry duration of the key
maintenance - set to true to enable the maintenance plan for this license
generic - set to true to create a generic license key. Generic license keys are designed for
enterprise customers who purchase hundreds of licenses and do not want to have to activate
licenses on every single computer. They activate a single license and get back a Generic
Computer Key. Then on every other computer in the organization, they use the Generic
Computer Key.
licenseModel - the license model associated to this license key. The license model can be
Permanent | Trial | Subscription
comment - comment to be added to the license record
orderStatus - set the order status of the license to one of the allowed values: EInProgress |
EComplete | EUpgraded | EReleased

Page 243

productProperties: xml string reprensenting the product properties to set. The xml string can be
created by calling IProductProperties.Serialize().
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <keys>A062E-9D0CC-6DC80-0D6A0-E0701-000A0;A062E-9D0CC-6DC80-0D6A0-

E0701-000A0</keys>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>Details about the error</error>
 </QuickLicenseManager>

Page 244

CreateOrder
 Creates an order and an activation key with an expiry date over the internet. To use a proxy server, you
must set the UseProxyServer, ProxyUser, ProxyDomain and ProxyPassword properties prior to calling
this function.
Note that to call this function, you must update the web.config on the web server as follows:
<setting name="enableCreateOrder" serializeAs="String">
<value>True</value>
</setting>
C#: void CreateOrder(string webServiceUrl, string email, int features, int quantity, bool
useMultipleActivationsKey, string qlmVersion, string vendor, string userData1, string affiliateID,
DateTime expiryDate, int expiryDuration, string orderID, int orderStatus, out string response)
Parameters

 webServiceUrl - URL to the QLM License Server.
email - email address to associate to the license key - may be empty
features - or'ed value of the features to enable
quantity - the number of licenses to embed in the key
useMultipleActivationsKey - if set to true and quantity > 1, one license key will be generated for
all required licenses. The number of licenses will be embedded in the license key
qlmVersion - the version of the QLM Engine
vendor - the eCommerce vendor to use when generating the key
userData1 - user data to associate to this license
affiliateID - ID of affiliate
expiryDate - Expiry date of the key
expiryDuration - Expiry duration of the key
orderID - order ID
orderStatus - status of the order. Possible values are: None (0), In Progress (1), Completed (2).
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <keys>A062E-9D0CC-6DC80-0D6A0-E0701-000A0;A062E-9D0CC-6DC80-0D6A0-

E0701-000A0</keys>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>Details about the error</error>
 </QuickLicenseManager>

Page 245

CreateOrderEx
 Creates an order and an activation key with an expiry date over the internet. To use a proxy server, you
must set the UseProxyServer, ProxyUser, ProxyDomain and ProxyPassword properties prior to calling
this function.
Note that to call this function, you must update the web.config on the web server as follows:
<setting name="enableCreateOrder" serializeAs="String">
<value>True</value>
</setting>
C#: void CreateOrderEx(string webServiceUrl, string email, int [] features, int quantity, bool
useMultipleActivationsKey, string qlmVersion, string vendor, string userData1, string affiliateID,
DateTime expiryDate, int expiryDuration, string orderID, int orderStatus, out string response)
Parameters

 webServiceUrl - URL to the QLM License Server.
email - email address to associate to the license key - may be empty
features - array of feature sets. each feature set is an or'ed value of the features to enable in the
feature set
quantity - the number of licenses to embed in the key
useMultipleActivationsKey - if set to true and quantity > 1, one license key will be generated for
all required licenses. The number of licenses will be embedded in the license key
qlmVersion - the version of the QLM Engine
vendor - the eCommerce vendor to use when generating the key
userData1 - user data to associate to this license
affiliateID - ID of affiliate
expiryDate - Expiry date of the key
expiryDuration - Expiry duration of the key
orderID - order ID
orderStatus - status of the order. Possible values are: None (0), In Progress (1), Completed (2).
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <keys>A062E-9D0CC-6DC80-0D6A0-E0701-000A0;A062E-9D0CC-6DC80-0D6A0-

E0701-000A0</keys>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>Details about the error</error>
 </QuickLicenseManager>

Page 246

DeleteLicense
 Deletes a license key over the internet. To use a proxy server, you must set the UseProxyServer,
ProxyUser, ProxyDomain and ProxyPassword properties prior to calling this function.
C#: void DeleteLicense (string webServiceUrl, string activationKey, string computerID, bool
multipleActivationsKey, bool historyTable, out string response)
Parameters

 webServiceUrl - URL to the QLM License Server.
activationKey - the license key to delete
computerID - the computer ID to delete. The computerID is optional if multipleActivationsKey is
false.
multipleActivationsKey - set to true if this key is a multiple activations key. The Delete operates
then on the ActivationLog table. The computerID must be specified.
historyTable - set to true if you want to delete licenses from the history table where all released
licenses are backed up.
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <result>ActivationKey A162DCF05C30D371A2D0E0461040A0 has been

deleted.</result>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>Details about the error</error>
 </QuickLicenseManager>

Page 247

DownloadProducts
 Downloads the list of products from the License Server over the internet. To use a proxy server, you
must set the UseProxyServer, ProxyUser, ProxyDomain and ProxyPassword properties prior to calling
this function.
C#: void DownloadProducts (string webServiceUrl, ref string dataSet, out string response)
Parameters

 webServiceUrl - URL to the QLM License Server.
serverDate - returns the date the products were uploaded to the server.
dataSet - returned dataset containing products
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <result>Succesfully downloaded products.</result>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>Details about the error</error>
 </QuickLicenseManager>

Page 248

GetCustomersInfo
 Retrieves information about a set of customers.
C#: DataSet GetCustomersInfo (string webServiceUrl, string fieldName, string fieldOperator, string
fieldValue, out string response)
Parameters

 webServiceUrl - URL to the QLM License Server.
field - field from the Customers table. Typical fields are: Email, FullName, CustomerID
fieldOperator - a valid SQL operator such as: =, like, <>
fieldValue - value of the field to match
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <result>Successfully executed query ...</result>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>Details about the error</error>
 </QuickLicenseManager>

 Example
 DataSet ds = license.GetCustomersInfo (webServiceUrl, "email", "=", "'customer@mail.com'",

out response);

Page 249

GetCustomersInfoEx
 Retrieves information about a set of customers.
This function is similar
C#: IQlmCustomerInfo [] GetCustomersInfoEx (string webServiceUrl, string fieldName, string
fieldOperator, string fieldValue)
Parameters

 webServiceUrl - URL to the QLM License Server.
field - field from the Customers table. Typical fields are: Email, FullName, CustomerID
fieldOperator - a valid SQL operator such as: =, like, <>
fieldValue - value of the field to match

C# Example
 IQlmCustomerInfo[] customers = license.GetCustomersInfo (webServiceUrl, "email", "=",

"'customer@mail.com'");
C++ Example
 // Get all the customer records
SAFEARRAY * sa = qlmLicense->GetCustomersInfoEx (webServiceUrl
_bstr_t(""),_bstr_t(""),_bstr_t(""));IQlmCustomerInfo *ci;
LONG numRecords = 0;
SafeArrayGetUBound (sa, 1, &numRecords);
for (LONG i=0; i < numRecords; i++)
{
SafeArrayGetElement (sa, &i, &ci);
}
// Destroy the safe array when done
SafeArrayDestroy (sa);

Page 250

GetDataSet
 Gets a data set in xml format that meets the criteria specified in the filter.
C#: void GetDataSet (string webServiceUrl, string filter, ref string dataSet, out string response)
Parameters

 webServiceUrl - URL to the QLM License Server.
filter - SQL filter to determine which records to return. Use a where clause sql syntax, example:
ActivationKey='AAAA'. Note that if the filter contains an Activation Key or a Computer Key,
you must strip out the dashes in the license key. License keys in the database are stored without
dashes.
dataSet - returned dataset containing license key records that match criteria
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <result>Successfully executed query using filter...</result>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>Details about the error</error>
 </QuickLicenseManager>

Page 251

GetDataSetEx
 Gets a data set in xml format that meets the criteria specified in the filter.
C#: void GetDataSetEx (string webServiceUrl, string table, string filter, ref string dataSet, out string
response)
Parameters

 webServiceUrl - URL to the QLM License Server.
table- specify the table to query. The value can be: LicenseKeys or LicenseKeysHistory.
LicenseKeys is the table where all license keys are recorded. LicenseKeysHistory contains all
the released license keys.
filter - SQL filter to determine which records to return. Use a where clause sql syntax, example:
ActivationKey='AAAA'. Note that if the filter contains an Activation Key or a Computer Key,
you must strip out the dashes in the license key. License keys in the database are stored without
dashes.
dataSet - returned dataset containing license key records that match criteria
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <result>Successfully executed query using filter...</result>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>Details about the error</error>
 </QuickLicenseManager>

Page 252

RenewSubscription
 Connects to the License Server and renews a subscription.
When a subscription is renewed, each activated license is automatically reactivated on the server and a
new computer bound key is generated with a new expiry date. When customers reactivate their license,
they receive the new computer bound key with the new expiry date, thus extending their subscription
period.
C#: bool RenewSubscription (string webServiceUrl, string activationKey, DateTime expiryDate, out
string errorMessage)

webServiceUrl - URL to the QLM License Server.
activationKey- activation key to extend
expiryDate - Expiry date of the subscription
errorMessage - Error message if the operation failed.

Return
 True if the subscription renewal was successful.

Page 253

SetMaintenancePlanRenewalDate
 Sets the maintenance plan renewal date.
C#: bool SetMaintenancePlanRenewalDate (string webServiceUrl, string activationKey, DateTime
maintenancePlanRenewalDate, out string errorMessage)
Parameters

 webServiceUrl - URL to the QLM License Server.
activationKey - the activation key of the record.
maintenancePlanRenewalDate - the renewal date of the maintenance plan
errorMessage - returned error message

It is recommended to send a UTC date.
If the function succeeds, the return value is true.If the function fails, the return is value is false. The
errorMessage contains details about the error.

Page 254

UpdateActivationLogInfo
 Updates the data associated with a license key. To use a proxy server, you must set the
UseProxyServer, ProxyUser, ProxyDomain and ProxyPassword properties prior to calling this function.
The ActivationLog table is used when multiple licenses are issued from a single ActivationKey. In this
case, the data associated with each activated computer is stored in the ActivationLog table instead of the
LicenseKeys table. Therefore, to update data in the ActivationLog table, you need to specify which
computer to update. The computerID, computerKey and computerName arguments can be specified to
identify the computer. At least one of these arguments must be specified.
The ActivationLog table contains the following updatable fields:

 ComputerKey, ComputerName, ComputerID, ActivationDate, LastAccessedDate,
ActivationCount

C#: bool UpdateActivationLogInfo (string webServiceUrl, string activationKey, string computerID,
string computerKey, string computerName, string licenseData, out string response)
Parameters

 webServiceUrl - URL to the QLM License Server.
activationKey- the license key to udpate
computerID- the ID the computer to udpate
computerKey- the computer bound key to udpate
computerName- the computer name to udpate
licenseData - XML fragment containing the fields to update. The XML fragment should be of the
form:
 <licenseArguments

o field1=" 'value'
o field2=" 'value' "

 </licenseArguments>
 where field1 is the name of a field in the LicenseKeys table. For fields of type date, you

should use the following date/time format: yyyy-MM-dd HH:mm:ss
 Example:
 <licenseArguments

o ComputerName= " 'my pc' "
o UserData1=" 'my user data' "

 </licenseArguments>
 response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <result>Successfully updated license information for ActivationKey=XYZ.</result>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>Details about the error</error>
 </QuickLicenseManager>

Page 255

UpdateLicenseInfo
 Updates the data associated with a license key. To use a proxy server, you must set the
UseProxyServer, ProxyUser, ProxyDomain and ProxyPassword properties prior to calling this function.
C#: bool UpdateLicenseInfo (string webServiceUrl, string activationKey, string licenseData, out string
response)
Parameters

 webServiceUrl - URL to the QLM License Server.
activationKey- the license key to udpate
licenseData - XML fragment containing the fields to update. The XML fragment should be of the
form:
 <licenseArguments

o field1=" 'value'
o field2=" 'value' "

 />
 where field1 is the name of a field in the LicenseKeys table. For fields of type date, you

should use the following date/time format: yyyy-MM-dd HH:mm:ss
 Example:
 <licenseArguments

o Comment= " 'my comment' "
o UserData1=" 'my user data' "
o OrderDate=" '2008-3-12 21:14:58' "

 />
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <result>Successfully updated license information for ActivationKey=XYZ.</result>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>Details about the error</error>
 </QuickLicenseManager>

Page 256

UpdateLicenseKey
 Updates a license key with another license key. To use a proxy server, you must set the
UseProxyServer, ProxyUser, ProxyDomain and ProxyPassword properties prior to calling this function.
C#: bool UpdateLicenseKey (string webServiceUrl, string currentKey, string newKey, out string
response)
Parameters

 webServiceUrl - URL to the QLM License Server.
currentKey - the current license key
newKey - the new license key
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <result>Successfully updated license information for ActivationKey=XYZ.</result>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>Details about the error</error>
 </QuickLicenseManager>

Page 257

UpdateOrderStatus
 Connects to the License Server and updates the status of an order. To use a proxy server, you must set
the UseProxyServer, ProxyUser, ProxyDomain and ProxyPassword properties prior to calling this
function.
C#: bool UpdateOrderStatus (string webServiceUrl, string orderID, int orderStatus, out string
response)
Parameters

 webServiceUrl - URL to the QLM License Server.
orderID - ID of the order
orderStatus - status of the order to set
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <result>Order status updated successfully.</result>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>The order id is not valid</error>
 </QuickLicenseManager>

Return
 Boolean indicating whether the operation was successful.
Example:

 QlmLicense license = new QlmLicense ();
license.DefineProduct(1, "Demo", 1, 0, "DemoKey",
"{24EAA3C1-3DD7-40E0-AEA3-D20AA17A6005}");
string response = string.Empty;
bool stat = license.UpdateOrderStatus
("https://qlm3.net/qlmdemov16/QlmLicenseServer/qlmservice.asmx", 1234, 2, out response);

Page 258

UpgradeLicense
 Connects to the License Server and upgrades a license. You can upgrade the following data associated
to a license:

 Features associated to a license
 Expiry date of the license
 Duration of the license
 Major and Minor version of the product
 The version of the QLM Engine used to generate the license key

When a license is upgraded, a new license key is generated and replaces the existing one. The old license
is copied to the released licenses table. To use a proxy server, you must set the UseProxyServer,
ProxyUser, ProxyDomain and ProxyPassword properties prior to calling this function.
C#: bool UpgradeLicense (string webServiceUrl, string activationKey, int productID, int
majorVersion, int minorVersion, string qlmVersion, int[] features, DateTime dtExpiry, int expiryDuration,
out string response)
Http:

hhttp://server/qlm/qlmservice.asmx/UpgradeLicense?is_avkey=<activationKey>&is_productid=<pid>&i
s_majorversion=<majorVersion>&is_minorversion=<minorVersion>&is_expdate=<yyyy-mm-dd>&is_
expdate>&is_expduration=<expiry duration>
Example:
http://server/qlm/qlmservice.asmxUpgradeLicense?is_avkey=B0739A30F960FAA0FA3045D0560000
000&is_productid=1&is_majorversion=1&is_minorversion=0&is_expdate=2008-06-01
Parameters

 webServiceUrl - URL to the QLM License Server.
activationKey- activation key to update
productID - ID of the product
majorVersion - New major version of the product
minorVersion - New minor version of the product
qlmVersion - Version of the QLM Engine to use.
features - An array of feature sets specifying the features that should be enabled in the created
key. Each feature has a unique feature set and ID associated to it. To combine features, perform
a bitwise OR operation on the required features.
dtExpiry - Expiry date of the license key
expiryDuration - Expiry duration of the license key
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <result>The license was upgraded...</result>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>The activation key is not valid</error>
 </QuickLicenseManager>

Return
 True if the upgrade was successful.

Page 259

http://server/qlm/qlmservice.asmxUpgradeLicense?is_avkey=B0739A30F960FAA0FA3045D0560000

UpgradeLicenseEx
 Connects to the License Server and upgrades a license. You can upgrade the following data associated
to a license:

 Features associated to a license
 Expiry date of the license
 Duration of the license
 Major and Minor version of the product
 The version of the QLM Engine used to generate the license key

When a license is upgraded, a new license key is generated and replaces the existing one. The old license
is copied to the released licenses table. To use a proxy server, you must set the UseProxyServer,
ProxyUser, ProxyDomain and ProxyPassword properties prior to calling this function.
C#: bool UpgradeLicenseEx (string webServiceUrl, string activationKey, int productID, int
majorVersion, int minorVersion, string qlmVersion, string features, DateTime dtExpiry, int
expiryDuration, string comment, out newActivationKey, out string response)
Parameters

 webServiceUrl - URL to the QLM License Server.
activationKey- activation key to update
productID - ID of the product
majorVersion - New major version of the product
minorVersion - New minor version of the product
qlmVersion - Version of the QLM Engine to use.
features - A semi comma separated list of enabled feature sets. For example, to enable features
001 and 002 in feature set 0 and features 004 and 008 in feature set 2, you use: "0:3;2:12"
dtExpiry - Expiry date of the license key
expiryDuration - Expiry duration of the license key
comment - A comment to add to the license record
newActivationKey - the newly generated activation key (out argument)
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <result>The license was upgraded...</result>
 </QuickLicenseManager>
In the event of an error, the XML fragments returns:
 <?xml version='1.0' encoding='UTF-8'?>
 <QuickLicenseManager>
 <error>The activation key is not valid</error>
 </QuickLicenseManager>

Return
 True if the upgrade was successful.

Page 260

UploadProducts
 Uploads the list of products to the License Server over the internet. To use a proxy server, you must set
the UseProxyServer, ProxyUser, ProxyDomain and ProxyPassword properties prior to calling this
function.
C#: void UploadProducts (string webServiceUrl, string productsXml, DateTime updatedUtcDate, out
string response)
Parameters

 webServiceUrl - URL to the QLM License Server.
productsXml - >Xml file containing the list of products. The format of the XML file is identical to
the products.xml file stored on the client side. For example:

<?xml version='1.0' encoding='UTF-8'?>
<LICENSES>
<PRODUCTS>
<PRODUCT Name="Demo" ID="1" Major="2" Minor="0" Key="DemoKey"
GUID="{AB932603-7336-4DA4-90C1-843C4146E388}" ReleaseDate="2008-12-11"
Features="" LatestVersion="2.0" LatestVersionUrl="" LatestVersionNotes="" />
<PRODUCT Name="Demo" ID="1" Major="1" Minor="0" Key="DemoKey"
GUID="{24EAA3C1-3DD7-40E0-AEA3-D20AA17A6005}"
ReleaseDate="2007-12-01" Features="0:1:F1;0:2:F2;0:4:F3;3:1:D1;" LatestVersion="1.1"
LatestVersionUrl="http://yourserver/setup.exe" LatestVersionNotes="In this field, insert
comments that describe the latest version of your product.

This information can be retrieved by your application when checking for updates and displayed to the
end user." />

</PRODUCTS>
</LICENSES>

updatedUtcDate - UTC Date at which the products were last updated.
response - XML fragment containing the result of the call. The Xml fragment schema is as
follows:

<?xml version='1.0' encoding='UTF-8'?>
<QuickLicenseManager>
<result>Succesfully downloaded products.</result>
</QuickLicenseManager>

In the event of an error, the XML fragments returns:
<?xml version='1.0' encoding='UTF-8'?>
<QuickLicenseManager>
<error>Details about the error</error>
</QuickLicenseManager>

Page 261

Client Side API
 QLM Pro provides a set of client side functions that you can use in your application or in any other
order processing application that you may have. Client side functions do not communicate with the QLM
License Server.
Before calling any of the functions below, you need to call the DefineProduct function and set the
PublicKey property.
Functions that create license keys such as CreateLicenseKey should not typically be used from within
your application. They should be used from a server or a system that the end user does not have access
to. In order to call any of the functions that create license keys, you must set the PrivateKey property of
the QlmLicense object.
The Public and Private keys for your product can be found in the Define Products tab / Keys tab.
If you are developing an application in .NET, it is highly recommeded that you obfuscate your code, and
more specifically that you encrypt sensitive strings such as the PrivateKey.

Page 262

BackwardCompatible
 Set this property to true to allow validation of keys prior to the latest version of the QLM engine.
C++: VARIANT_BOOL BackwardCompatible
C#: bool BackwardCompatible

Page 263

CreateLicenseKey
 Creates a non-computer bound license key. If the ExpiryDate is NULL and the ExpiryDuration is -1,
the license key is a permanent non-evaluation license key.
Prior to calling this function, you must call DefineProduct and set the PrivateKey property. Note that
including the PrivateKey in your code is not recommended. Creation of license keys should not typically
be done from within the application but rather from a server that the user does not have access to.
C++: _bstr_t CreateLicenseKey (DATE ExpiryDate, int ExpiryDuration)
C#: string CreateLicenseKey (System.DateTime ExpiryDate, int ExpiryDuration)
Parameters

 ExpiryDate - The date when the license will expire. Use NULL if you do not want to specify an
expiry date.
ExpiryDuration - The duration of the evaluation period in days. Use -1 if you do not want to
specify a duration.
Return
 A non-computer bound license key.

Page 264

CreateLicenseKeyEx
 Creates a computer bound license key.
Prior to calling this function, you must call DefineProduct and set the PrivateKey property. Note that
including the PrivateKey in your code is not recommended. Creation of license keys should not typically
be done from within the application but rather from a server that the user does not have access to.
 C++: _bstr_t CreateLicenseKeyEx (ELicenseType LicenseType, BSTR MachineID)
C#: string CreateLicenseKeyEx (ELicenseType LicenseType, string MachineID)
Parameters

 LicenseType - Specify the type of license to generate. See the definition of LicenseType below.
MachineID - A unique identifier for the machine. If you specify a ComputerName as the
LicenseType, this argument must be the Computer Name. If you specify User Defined
as the LicenseType, this argument can be anything you want. When validating the license key in
your code, you will need to provide the same value to the ValidateLicenseEx function.
Return
 A computer bound license key.

Page 265

CreateLicenseKeyEx2
 Creates a computer bound license key that has an expiry date and a number of licenses.
Prior to calling this function, you must call DefineProduct and set the PrivateKey property. Note that
including the PrivateKey in your code is not recommended. Creation of license keys should not typically
be done from within the application but rather from a server that the user does not have access to.
 C++: _bstr_t CreateLicenseKeyEx2 (DATE ExpiryDate, int ExpiryDuration, int NumberOfLicenses,
ELicenseType LicenseType, BSTR MachineID)
C#: string CreateLicenseKeyEx2 (System.DateTime ExpiryDate, int ExpiryDuration, int
NumberOfLicenses, ELicenseType LicenseType, string MachineID)
Parameters

 ExpiryDate - The date when the license will expire. Use NULL if you do not want to specify an
expiry date.
ExpiryDuration - The duration of the evaluation period in days. Use -1 if you do not want to
specify a duration.
NumberOfLicenses - The number of licenses associated with the key. Use 1 if you do not want
to use single activation licensing.
LicenseType - Specify the type of license to generate. See the definition of LicenseType below.
MachineID - A unique identifier for the machine. If you specify a ComputerName as the
LicenseType, this argument must be the Computer Name. If you specify User Defined
as the LicenseType, this argument can be anything you want. When validating the license key in
your code, you will need to provide the same value to the ValidateLicenseEx function. To create
a key that is not computer bound, set this argument to NULL and set the LicenseType to
Generic.
Return
 A computer bound license key.

Page 266

CreateLicenseKeyEx3
 Creates a computer bound license key that has an expiry date, a number of licenses and a specific set of
features that are enabled.
Prior to calling this function, you must call DefineProduct and set the PrivateKey property. Note that
including the PrivateKey in your code is not recommended. Creation of license keys should not typically
be done from within the application but rather from a server that the user does not have access to.
 C++: _bstr_t CreateLicenseKeyEx3 (DATE expiryDate, int expiryDuration, int numberOfLicenses,
ELicenseType licenseType, BSTR machineID, in features)
C#: string CreateLicenseKeyEx3 (System.DateTime expiryDate, int expiryDuration, int
numberOfLicenses, ELicenseType licenseType, string machineID, int features)
Parameters

 ExpiryDate - The date when the license will expire. Use NULL if you do not want to specify an
expiry date.
ExpiryDuration - The duration of the evaluation period in days. Use -1 if you do not want to
specify a duration.
NumberOfLicenses - The number of licenses associated with the key. Use 1 if you do not want
to use single activation licensing.
LicenseType - Specify the type of license to generate. See the definition of LicenseType below.
MachineID - A unique identifier for the machine. If you specify a ComputerName as the
LicenseType, this argument must be the Computer Name. If you specify User Defined
as the LicenseType, this argument can be anything you want. When validating the license key in
your code, you will need to provide the same value to the ValidateLicenseEx function. To create
a key that is not computer bound, set this argument to NULL and set the LicenseType to
Generic.
Features - A value specifying the features that should be enabled in the created key. Each feature
has a unique ID associated to it. To combine features, perform a bitwise OR operation on the
required features.
Return
 A computer bound license key.

Page 267

CreateLicenseKeyEx4
 Creates a computer bound license key that has an expiry date, a number of licenses and a specific set of
features that are enabled.
Prior to calling this function, you must call DefineProduct and set the PrivateKey property. Note that
including the PrivateKey in your code is not recommended. Creation of license keys should not typically
be done from within the application but rather from a server that the user does not have access to.
 C++: _bstr_t CreateLicenseKeyEx4 (DATE expiryDate, int expiryDuration, int numberOfLicenses,
ELicenseType licenseType, BSTR machineID, int[] features)
C#: string CreateLicenseKeyEx4 (System.DateTime expiryDate, int expiryDuration, int
numberOfLicenses, ELicenseType licenseType, string machineID, SAFEARRAY *Features)
Parameters

 ExpiryDate - The date when the license will expire. Use NULL if you do not want to specify an
expiry date.
ExpiryDuration - The duration of the evaluation period in days. Use -1 if you do not want to
specify a duration.
NumberOfLicenses - The number of licenses associated with the key. Use 1 if you do not want
to use single activation licensing.
LicenseType - Specify the type of license to generate. See the definition of LicenseType below.
MachineID - A unique identifier for the machine. If you specify a ComputerName as the
LicenseType, this argument must be the Computer Name. If you specify User Defined
as the LicenseType, this argument can be anything you want. When validating the license key in
your code, you will need to provide the same value to the ValidateLicenseEx function. To create
a key that is not computer bound, set this argument to NULL and set the LicenseType to
Generic.
Features - An array of feature sets. Each feature set is a value specifying the features that should
be enabled in the created key. The value of the feature set is the or'ed value of all the features to
be enabled in the set. To combine features, perform a bitwise OR operation on the required
features.
Return
 A computer bound license key.

Page 268

CreateLicenseKeyEx5
 Creates a computer bound license key that has an expiry date, a number of licenses and a specific set of
features that are enabled. This API is functionally identical to CreateLicenseKeyEx4. It was created to
accomodate programming languages such as VB6 that cannot handle the array data type used in
CreateLicenseKeyEx4.
Prior to calling this function, you must call DefineProduct and set the PrivateKey property. Note that
including the PrivateKey in your code is not recommended. Creation of license keys should not typically
be done from within the application but rather from a server that the user does not have access to.
 C++: _bstr_t CreateLicenseKeyEx5 (DATE expiryDate, int expiryDuration, int numberOfLicenses,
ELicenseType licenseType, BSTR machineID, BSTR features)
C#: string CreateLicenseKeyEx5 (System.DateTime expiryDate, int expiryDuration, int
numberOfLicenses, ELicenseType licenseType, string machineID, string Features)
Parameters

 ExpiryDate - The date when the license will expire. Use NULL if you do not want to specify an
expiry date.
ExpiryDuration - The duration of the evaluation period in days. Use -1 if you do not want to
specify a duration.
NumberOfLicenses - The number of licenses associated with the key. Use 1 if you do not want
to use single activation licensing.
LicenseType - Specify the type of license to generate. See the definition of LicenseType below.
MachineID - A unique identifier for the machine. If you specify a ComputerName as the
LicenseType, this argument must be the Computer Name. If you specify User Defined
as the LicenseType, this argument can be anything you want. When validating the license key in
your code, you will need to provide the same value to the ValidateLicenseEx function. To create
a key that is not computer bound, set this argument to NULL and set the LicenseType to
Generic.
Features - A set of features to be enabled using the following syntax:

<featureSet>:<featureValue>;<featureSet>:<featureValue>
Example: "0:8;1:2;3:14" - Enables: feature id 8 in feature set 0, feature id 2 in feature set 1
and feature ids 2, 4, 8 (2 + 4 + 8 = 14) in feature set 3.
To combine features, perform a bitwise OR operation on the required features.

Return
 A computer bound license key.

Page 269

DaysLeft
 Returns the number of days left before the evaluation expires. You must call ValidateLicense prior to
calling this function.
C++: int DaysLeft
C#: int DaysLeft ()
Return

 Number of days left before the evaluation expires.

Page 270

DefineProduct
 The DefineProduct method initializes basic information required to validate license keys. You must call
this function prior to calling any other function.
C++:
 VARIANT_BOOL DefineProduct (int ProductID, BSTR ProductName, int MajorVersion, int
MinorVersion, BSTR EncryptionKey, BSTR PersistenceKey)
C#:
 bool DefineProduct (int ProductID, string ProductName, int MajorVersion, int MinorVersion, string
EncryptionKey, string PersistenceKey)
Parameters

 ProductID
: ID of the product as generated by Quick License Manager
ProductName
: Name of the product
MajorVersion
: Major version of the product (maximum 2 digits)
MinorVersion
: Minor version of the product (maximum 2 digits)
Encryption
 Key: string used to encrypt the license key.
PersistenceKey
: GUID associated with the product and automatically generated by Quick License Manager for
each product. The evaluation information of the product is stored at runtime in the registry under
HKCR\CLSID\<GUID>.

Page 271

DeleteKeys
 Deletes the license keys stored on the end user system with the StoreKeys API. To store keys, use the
StoreKeys API. To read the stored keys, use the ReadKeys API.
C#: void DeleteKeys ()

Page 272

DeleteKeysEx
 Deletes license keys, proxy settings and floating license settings stored on the end user system with the
StoreKeys API. To store keys, use the StoreKeys API. To read the stored keys, use the ReadKeys
API.
C#: void DeleteKeys (bool deleteActivationKey, bool deleteComputerKey, bool deleteProxySettings,
bool deleteFloatingSettings, out string errorMessage))
Parameters

 deleteActivationKey - If true, deletes the Activation Key.
deleteComputerKey - If true, deletes the Computer Key.
deleteProxySettings - If true, deletes Proxy Settings.
deleteFloatingSettings - If true, deletes Floating License settings.
errorMessage - errorMessage returned if some operations failed.

Page 273

Duration
 Returns the duration in days of the evaluation key. You must call ValidateLicense prior to calling this
function.
C++: int Duration
C#: int Duration ()
Return

 Duration of the evaluation key.

Page 274

ELicenseStatus
 Enum of all possible values of the license key status. Note that the status can consist of a combination of
these values:
EKeyPermanent : The license key is valid and it is a permanent license key.
EKeyInvalid : The license key is invalid. It was not decoded succesfully.
EKeyDemo : The license key is an evaluation key.
EKeyProductInvalid : The product ID of the license key does not correspond to the expected Product
ID.
EKeyVersionInvalid : The Major or Minor version of the license key does not correspond to the
expected Major or Minor version.
EKeyExpired : The license key has expired.
EKeyTampered
: The license key was tampered typically indicating that the user is attempting to set the date back to run
the software.
EKeyMachineInvalid
: If you are using computer bound license keys, an EKeyMachineInvalid status indicates that the license
key that was validated does not match the computer to which the license key was bound.
EKeyNeedsActivation
: This flag indicates that the license key is an activation key. If you detect an activation key, you should
not enable your application. You should just allow the user to activate his license. Once the license is
activated, a computer bound key is issued. Once you detect a valid computer bound key, you can enable
your application.

Page 275

ELicenseType
 Enum of all possible types of license keys.
Activation : The license key is a key that requires activation.
Evaluation (obsolete) : The license key is an evaluation key.
ComputerName : The license key is bound to the name of the computer.
Generic (previously PermanentGeneric) : The license key is permanent and not bound to a computer.
UserDefined
: The license key is bound to the computer based on a user defined unique identifier.

Page 276

EvaluationPerUser
 Set this property to true to store evaluation information per user. The default value is true. If set to false,
evaluation information is stored at the machine level. Note that you need to make sure the current user
has the required privileges to store evaluation information at the machine level under
HKEY_LOCAL_MACHINE\Software\Classes\CLSID\<GUID>.

Evaluation information consists of the installation date of your software as well as the last time your
software ran.
C++: VARIANT_BOOL EvaluationPerUser
C#: bool EvaluationPerUser

Page 277

ExpiryDate
 Returns the expiry date of the evaluation key. You must call ValidateLicense prior to calling this
function.
C++: DATE ExpiryDate
C#: System.DateTime ExpiryDate()
Return

 Expiry date of the evaluation key.

Page 278

FavorMachineLevelLicenseKey
 This property affects the ReadKeys API.

If a license key is stored both at the machine level and user level, QLM will use the machine level key if
this attribute is set to true. The default value is false.
For more details, read the help on how StoreKeys works.

Page 279

Features
 Returns an array of all the feature sets associated with the license key. Within a feature set (each element
of the array), if several features are associated to a license key, the returned value is a bitwise OR of
these features.

 This function must be called after a call to ValidateLicense or ValidateLicenseEx.
C++: int *Features
C#:/STRONG> int [] Features

Page 280

GetStatus
 Returns the last status. See ELicenseStatus for possible values.

You must always call this function after calling ValidateLicense or ValidateLicenseEx to get the result of
the validation.
C++: int GetStatus
C#: int GetStatus ()
Return

 Last status

Page 281

IsEvaluation
 Returns whether the current license key is an evaluation key. You must call ValidateLicense prior to
calling IsEvaluation.
C++: VARIANT_BOOL IsEvaluation
C#: bool IsEvaluation ()
Return

 Boolean indicating if the license key is an evaluation key.

Page 282

IsFeatureEnabled
 Returns whether the specified feature is enabled in this license key. This function is now obsolete and has
been superseded by IsFeatureEnabledEx.

You must call ValidateLicense prior to calling IsFeatureEnabled. C++: VARIANT_BOOL
IsFeatureEnabled (int feature)
C#: bool IsFeatureEnabled (int feature)
Parameters

 feature - id of feature to be checked.
Return

 Boolean indicating if the featured is enabled.

Page 283

IsFeatureEnabledEx
 Returns whether the specified feature is enabled in this license key. You must call ValidateLicense prior
to calling IsFeatureEnabled.
C++: VARIANT_BOOL IsFeatureEnabled (int featureSet, int feature)
C#: bool IsFeatureEnabledEx (int featureSet, int feature)
Parameters

 featureSet - id of the feature set. QLM supports four feature sets (0 to 3).
feature - id of feature to be checked.

Return
 Boolean indicating if the featured is enabled.

Page 284

IsValid
 Returns whether the current license key is a valid key. A valid license key is a key that was decoded
properly and is either permanent or evaluation. You must call ValidateLicense prior to calling IsValid.
C++: VARIANT_BOOL IsValid
C#: bool IsValid ()
Return

 Boolean indicating if the license key is a valid key.

Page 285

LicenseType
 Returns the license type of the key. See ELicenseType for possible values.
C++: ELicenseType LicenseType
C#: ELicenseType LicenseType ()
Return

 License type

Page 286

LimitTerminalServerInstances
 This attribute limits the number of instances of your application when running on a Terminal Server.
When set to true, the QLM ValidateLicense API will fail if the number of running instances is greater than
the one defined in the license key.
An instance is defined as an instance of your application with a unique user id and a unique session id.
For example, if a user initiates a remote desktop session to a system, and launches 5 instances of your
application, the 5 instances will count as one because the same user has launched the 5 instances in the
same session.
If the same user then initiates another remote desktop session and launches 3 instances of your
application, the total number of instances will be 2.
This feature is only available with QLM Professional and QLM Enterprise.
You can control the number of allowed instances on a terminal server session by setting the Floating
Seats property when creating an Activation Key.

Page 287

NumberOfLicenses
 Returns the number of multiple activations enabled for the license key.
C++: int NumberOfLicenses
C#: int NumberOfLicenses;
Return

 Number Of LNumber Of Licenses

Page 288

MajorVersion
 Returns the major version associated to the license key. You must call ValidateLicense prior to calling
this function.
C++: int MajorVersion
C#: int MajorVersion
Return

 Major version of the product.

Page 289

MinorVersion
 Returns the minor version associated to the license key. You must call ValidateLicense prior to calling
this function.
C++: int MinorVersion
C#: int MinorVersion
Return

 Minor version of the product.

Page 290

LoadSettings
 Loads the settings XML file generated by the Protect Your Application wizard and initializes the
QlmLicense object with these settings.
In case of error loading the file, the function will throw an exception.
Note: The settings file format was modified in QLM v9+. Settings files generated by QLM v8 must be
first converted to the new format by executing the Protect Your Application wizard in QLM v10.
C#: void LoadSettings (string settingsFile)
Parameters

 settingsFile - Xml file generated by the Protect Your Application wizard.

Page 291

ParseResults
 Parses the result of a License Server call. All License Server calls return an XML fragment describing
the results of the call. This function parses the results and returns an ILicenseInfo interface describing the
results.
C#: public bool ParseResults(string results, ref ILicenseInfo licenseInfo, out string message)
Parameters

 results - value return from any License Server call
licenseInfo - object containing the result of the parse.
message - error messages if an error occured while parsing the data

Page 292

PrivateKey
 QLM version 5 implements asymmetric encryption to encrypt the license key. Asymmetric enryption is
safer because one key encrypts the license, the private key, and another key, the public key, decrypts
that information. Therefore, you only need to include the public key in your source code.
This function sets the private key associated with your product. The private key should be set before you
create a license, typically right after the call to DefineProduct. If you are creating a license key with a
QLM engine version prior to version 5, you do not need to set the private key. It is highly recommended
that you do not set the private key in your code.
The private key of your product can be found on the DefineProduct screen under the Keys tab in the
QLM Console.
C++: _bstr_t privateKey
C#: string PrivateKey

Page 293

ProductID
 Returns the product ID associated to the license key. You must call ValidateLicense prior to calling this
function.
C++: ibt ProductID
C#: int ProductID ()
Return

 Product ID associated to the license key.

Page 294

ProxyUser
 Get or set the name of the user account to use when connecting via a proxy server.
You must also set the following properties: UseProxy, ProxyPassword and ProxyDomain.

Page 295

ProxyPassword
 Get or set the password of the user account to use when connecting via a proxy server.
You must also set the following properties: UseProxy, ProxyUser and ProxyDomain.

Page 296

ProxyDomain
 Get or set the domain of the user account to use when connecting via a proxy server.
You must also set the following properties: UseProxy, ProxyUser and ProxyPassword.

Page 297

PublicKey
 QLM version 5 implements asymmetric encryption to encrypt the license key. Asymmetric enryption is
safer because one key encrypts the license, the private key, and another key, the public key, decrypts
that information. Therefore, you only need to include the public key in your source code.
This function sets the public key associated with your product. The public key should be set before you
validate a license, typically right after the call to DefineProduct. If you are validating a license key with a
QLM engine version prior to version 5, you do not need to set the public key.
The public key of your product can be found on the DefineProduct screen under the Keys tab in the
QLM Console.
C++: _bstr_t publicKey
C#: string PublicKey

Page 298

ReadCookie
 Reads data stored in a cookie by the StoreCookie API.

Use the FavorMachineLevelLicenseKey to control which key takes precedence if the keys are stored at
the user and machine level.
C#: bool ReadCookie(string cookieName, int index, out string data)
Parameters

 cookieName- the name of the cookie. index - the index of the element to retrieve. data - the
returned data

Page 299

ReadFloatingLicenseLocation
 Reads the license keys stored on the end user system with the StoreFloatingLicenseLocation API.
C#: bool ReadFloatingLicenseLocation (ref string floatingLicenseDbPath)
Parameters

 floatingLicenseDbPath- returns the location of the floating license database.
The function returns true if we were able to retrieve the location.

Page 300

ReadKeys
 Reads the license keys stored on the end user system with the StoreKeys API. To store keys, use the
StoreKeys API. To clear the stored keys, use the DeleteKeys API.

Use the FavorMachineLevelLicenseKey to control which key takes precedence if the keys are stored at
the user and machine level.
C#: void ReadKeys (ref string activationKey, ref string computerKey)
Parameters

 activationKey- the stored activation key. computerKey- the stored computer bound key.

Page 301

StoreCookie
 Writes data into a QLM cookie. To read keys, use the ReadKeys API. To clear the stored keys, use
the ReadCookie API.
C#: bool StoreCookie(string data, string cookieName, int index, out bool userLevelResult, out bool
machineLevelResult, out string errorMessage)

Parameters
 data - the data to write.
 cookieName - a unique name for the cookie.
 index - the index of the element to write. You can write multiple entries into a iven cookie.
 userLevelResult- returned boolean value indicating whether the operation was successful at

the user level.
 machineLevelResult- returned boolean value indicating whether the operation was successful

at the machine level./li>
 errorMessage- returned error message containing details about the failure, if any.
StoreCookie returns true if either the user level or the machine level operation is successful.

Description
 QLM stores its data in two locations: one location at the user level and another location at the machine
level. The StoreKeysOptions property controls where data is stored.
Additionally, the StoreKeysLocation property controls whether data is stored on the file system or in the
registry.

Data on the file system
 If you are running XP, the folders are:

C:\Documents and Settings\<your account name>\Application Data\IsolatedStorage*
C:\Documents and Settings\All Users\Application Data\IsolatedStorage

On Windows 7 or higher, the folders are:
C:\ProgramData\IsolatedStorage
C:\Users\tom\AppData\Local\IsolatedStorage

Example on Windows 7 or higher:
C:\ProgramData\IsolatedStorage\1zy03lmk.jql\epxur3qn.na0\StrongName.gziza0ait44cgjtqq2fgdpi3yp0i
dvio\AssemFiles

Under these folders, a file whose name is the GUID associated to your product (GUID in Define
Products page) is created and contains the license keys.

Data in the registry
 When QlmLicense.StoreKeysLocation is set to EStoreKeysTo.ERegistry, QLM tries to stores the keys
in 2 registry hives, one hive at the user level and one hive at the machine level.
On a 32 bit OS, QLM will write license information to:

 HKEY_CURRENT_USER\Software\Classes\CLSID\[GUID]
 HKEY_LOCAL_MACHINE\Software\Classes\CLSID\[GUID]

On a 64 bit OS, QLM will write license information to:
 HKEY_CURRENT_USER\Software\Classes\CLSID\[GUID]
 HKEY_LOCAL_MACHINE\Software\Classes\CLSID\[GUID]
 HKEY_CURRENT_USER\Software\Wow6432Node\Classes\CLSID\[GUID]

Page 302

 HKEY_LOCAL_MACHINE\Software\Wow6432Node\Classes\CLSID\[GUID]

Page 303

StoreFloatingLicenseLocation
 Stores the location of the floating license database and returns an error message in case of failure. To
read the location, use the ReadFloatingLicenseLocation API. To clear the stored information, use the
DeleteKeys API.
C#: StoreFloatingLicenseLocation(string floatingLicenseDbPath, out bool userLevelResult, out bool
machineLevelResult, out string errorMessage)

Parameters
 floatingLicenseDbPath- full path (in UNC format) to the floating license database.
 userLevelResult- returned boolean value indicating whether the operation was successful at

the user level.
 machineLevelResult- returned boolean value indicating whether the operation was successful

at the machine level.
 errorMessage- returned error message containing details about the failure, if any.
StoreFloatingLicenseLocation returns true if either the user level or the machine level operation is
successful.

Description
 QLM stores its data in two locations: one location at the user level and another location at the machine
level. The StoreKeysOptions property controls where data is stored.
Additionally, the StoreKeysLocation property controls whether data is stored on the file system or in the
registry.

Data on the file system
 If you are running XP, the folders are:

C:\Documents and Settings\<your account name>\Application Data\IsolatedStorage*
C:\Documents and Settings\All Users\Application Data\IsolatedStorage

On Windows 7 or higher, the folders are:
C:\ProgramData\IsolatedStorage
C:\Users\tom\AppData\Local\IsolatedStorage

Example on Windows 7 or higher:
C:\ProgramData\IsolatedStorage\1zy03lmk.jql\epxur3qn.na0\StrongName.gziza0ait44cgjtqq2fgdpi3yp0i
dvio\AssemFiles

Under these folders, a file whose name is the GUID associated to your product (GUID in Define
Products page) is created and contains the license keys.

Data in the registry
 When QlmLicense.StoreKeysLocation is set to EStoreKeysTo.ERegistry, QLM tries to stores the keys
in 2 registry hives, one hive at the user level and one hive at the machine level.
On a 32 bit OS, QLM will write license information to:

 HKEY_CURRENT_USER\Software\Classes\CLSID\[GUID]
 HKEY_LOCAL_MACHINE\Software\Classes\CLSID\[GUID]

On a 64 bit OS, QLM will write license information to:
 HKEY_CURRENT_USER\Software\Classes\CLSID\[GUID]
 HKEY_LOCAL_MACHINE\Software\Classes\CLSID\[GUID]
 HKEY_CURRENT_USER\Software\Wow6432Node\Classes\CLSID\[GUID]

Page 304

 HKEY_LOCAL_MACHINE\Software\Wow6432Node\Classes\CLSID\[GUID]

Page 305

StoreKeys
 Stores license keys on the end user system. To read keys, use the ReadKeys API. To clear the stored
keys, use the DeleteKeys API.
C#: void StoreKeys (string activationKey, string computerKey)

Parameters
 activationKey- the activation key to store
 computerKey- the computer bound key to store.

Description
 QLM stores its data in two locations: one location at the user level and another location at the machine
level. The StoreKeysOptions property controls where data is stored.
Additionally, the StoreKeysLocation property controls whether data is stored on the file system or in the
registry.

Data on the file system
 If you are running XP, the folders are:

C:\Documents and Settings\<your account name>\Application Data\IsolatedStorage*
C:\Documents and Settings\All Users\Application Data\IsolatedStorage

On Windows 7 or higher, the folders are:
C:\ProgramData\IsolatedStorage
C:\Users\tom\AppData\Local\IsolatedStorage

Example on Windows 7 or higher:
C:\ProgramData\IsolatedStorage\1zy03lmk.jql\epxur3qn.na0\StrongName.gziza0ait44cgjtqq2fgdpi3yp0i
dvio\AssemFiles

Under these folders, a file whose name is the GUID associated to your product (GUID in Define
Products page) is created and contains the license keys.

Data in the registry
 When QlmLicense.StoreKeysLocation is set to EStoreKeysTo.ERegistry, QLM tries to stores the keys
in 2 registry hives, one hive at the user level and one hive at the machine level.
On a 32 bit OS, QLM will write license information to:

 HKEY_CURRENT_USER\Software\Classes\CLSID\[GUID]
 HKEY_LOCAL_MACHINE\Software\Classes\CLSID\[GUID]

On a 64 bit OS, QLM will write license information to:
 HKEY_CURRENT_USER\Software\Classes\CLSID\[GUID]
 HKEY_LOCAL_MACHINE\Software\Classes\CLSID\[GUID]
 HKEY_CURRENT_USER\Software\Wow6432Node\Classes\CLSID\[GUID]
 HKEY_LOCAL_MACHINE\Software\Wow6432Node\Classes\CLSID\[GUID]

Page 306

StoreKeysEx
 Stores the license keys on the computer and returns an error message in case of failure. To read keys,
use the ReadKeys API. To clear the stored keys, use the DeleteKeys API.
C#: StoreKeysEx(string activationKey, string computerKey, out bool userLevelResult, out bool
machineLevelResult, out string errorMessage)

Parameters
 activationKey- the activation key to store
 computerKey- the computer bound key to store.
 userLevelResult- returned boolean value indicating whether the operation was successful at

the user level.
 machineLevelResult- returned boolean value indicating whether the operation was successful

at the machine level.
 errorMessage- returned error message containing details about the failure, if any.
StoreKeysEx returns true if either the user level or the machine level operation is successful.

Description
 QLM stores its data in two locations: one location at the user level and another location at the machine
level. The StoreKeysOptions property controls where data is stored.
Additionally, the StoreKeysLocation property controls whether data is stored on the file system or in the
registry.

Data on the file system
 If you are running XP, the folders are:

C:\Documents and Settings\<your account name>\Application Data\IsolatedStorage*
C:\Documents and Settings\All Users\Application Data\IsolatedStorage

On Windows 7 or higher, the folders are:
C:\ProgramData\IsolatedStorage
C:\Users\tom\AppData\Local\IsolatedStorage

Example on Windows 7 or higher:
C:\ProgramData\IsolatedStorage\1zy03lmk.jql\epxur3qn.na0\StrongName.gziza0ait44cgjtqq2fgdpi3yp0i
dvio\AssemFiles

Under these folders, a file whose name is the GUID associated to your product (GUID in Define
Products page) is created and contains the license keys.

Data in the registry
 When QlmLicense.StoreKeysLocation is set to EStoreKeysTo.ERegistry, QLM tries to stores the keys
in 2 registry hives, one hive at the user level and one hive at the machine level.
On a 32 bit OS, QLM will write license information to:

 HKEY_CURRENT_USER\Software\Classes\CLSID\[GUID]
 HKEY_LOCAL_MACHINE\Software\Classes\CLSID\[GUID]

On a 64 bit OS, QLM will write license information to:
 HKEY_CURRENT_USER\Software\Classes\CLSID\[GUID]
 HKEY_LOCAL_MACHINE\Software\Classes\CLSID\[GUID]
 HKEY_CURRENT_USER\Software\Wow6432Node\Classes\CLSID\[GUID]
 HKEY_LOCAL_MACHINE\Software\Wow6432Node\Classes\CLSID\[GUID]

Page 307

StoreKeysLocation
 This property affects the WriteKeys API.

The QLM API includes 2 methods that can store and read back the keys: StoreKeys and ReadKeys. If
you use the StoreKeys and ReadKeys API, or if you use the QLM .NET Web Control, the activation
key and computer key can be stored either in a file or in the registry on the end user system.

The possible values for this property are:

EFile: stores the license key in a file on the end user system.

ERegistry: stores the license key in the registry on the end user system.

To clear the keys stored on the system, call the DeleteKeys API.

Page 308

StoreKeysOptions
 This property affects the ReadKeys API.

The QLM API includes 2 methods that can store and read back the keys: StoreKeys and ReadKeys. If
you use the StoreKeys and ReadKeys API, or if you use the QLM .NET Web Control, the activation
key and computer key are stored in a file or in the registry on the end user system.

QLM tries to stores the keys in 2 locations: 1 location at the user level and 1 location at the machine
level.

For example, if you are storing keys to a file and you are running XP, the folders would be:

 C:\Documents and Settings\\Application Data\IsolatedStorage*
 C:\Documents and Settings\All Users\Application Data\IsolatedStorage

On Vista/Windows7/Windows8, it would be one of these folders:
 C:\ProgramData\IsolatedStorage
 C:\Users\AppData\Local\IsolatedStorage or
 C:\Users\AppData\Roaming\IsolatedStorage

 Example on Windows 7:

C:\ProgramData\IsolatedStorage\1zy03lmk.jql\epxur3qn.na0\StrongName.gziza0ait44cgjtqq2fgdpi3yp0i
dvio\AssemFiles

 Under these folders, look for a file whose name is the GUID associated to your product (GUID in
Define Products page).

When you call the ReadKeys API, ReadKeys tries to load the keys at the user level. If no keys are
found at the user level, then QLM tries to read the keys at the machine level.

The StoreKeysOptions property controls this behavior. The possible values are: EStoreKeysPerUser,
EStoreKeysPerMachine, EStoreKeysPerUserAndMachine..

The QlmLicense.FavorMachineLevelLicenseKey property determines which license key to pick up if
QLM finds license keys at the user level as well as the machine level.

To clear the keys stored on the system, call the DeleteKeys API.

Page 309

file:///C:/ProgramData/IsolatedStorage
file:///C:/Users/AppData/Roaming/IsolatedStorage
file:///C:/ProgramData/IsolatedStorage/1zy03lmk.jql/epxur3qn.na0/StrongName.gziza0ait44cgjtqq2fgdpi3yp0idvio/AssemFiles
file:///C:/ProgramData/IsolatedStorage/1zy03lmk.jql/epxur3qn.na0/StrongName.gziza0ait44cgjtqq2fgdpi3yp0idvio/AssemFiles
file:///C:/ProgramData/IsolatedStorage/1zy03lmk.jql/epxur3qn.na0/StrongName.gziza0ait44cgjtqq2fgdpi3yp0idvio/AssemFiles

UseProxy
 Get or set the flag to enable using a proxy server when connecting to the QLM License Server.
When set to true, you must also set the following properties: ProxyUser, ProxyPassword and
ProxyDomain

Page 310

ValidateFile
 Validates that the Quick License Manager DLL is authentic and was not tampered with. In order to
prevent hackers from replacing the IsLicense50.dll with their own version, you can validate the
authenticity of the DLL by calling the ValidateFile function. The ValidateFile function returns a fingerprint
(long number) that is the result of a checksum of the DLL contents combined with your own key. Use the
QlmFingerPrint.exe to generate this unique fingerprint and validate in your code that the runtime
fingerprint matches the generated one.
If you are using QLM Professional, you do not need to call this function. Instead, set the validateIntegrity
argument to true when constructing the QlmLicense object.
C++: long ValidateFile (BSTR LicenseDLL, BSTR Key);
C#: ulong ValidateFile(string LicenseDLL, BSTR Key)
Parameters

 LicenseDLL
: Full path to the License DLL. If this argument is NULL, the currently loaded License DLL is
used.
Key
: A unique key of your choice that is used to uniquely encrypt the fingerprint.

Return
 FingerPrint- A long umber that uniquely identifies your license DLL.

Page 311

ValidateLicense
 Validates a license key. You must call DefineProduct prior to calling this function.
After calling this function, call GetStatus to get the status of the call.
C++: _bstr_t ValidateLicense (BSTR LicenseKey);
C#: string ValidateLicense (string LicenseKey)
Parameters

 LicenseKey
: License Key to validate

Return
 Error message if ValidateLicense fails to validate or if the license is an evaluation license.

Page 312

ValidateLicenseEx
 Validates a computer bound license key. You can call this function for any type of license key. If the
license key is not computer bound, set the ComputerID to an empty string. You must call DefineProduct
prior to calling this function.
After calling this function, call GetStatus to get the status of the call.
C++: _bstr_t ValidateLicenseEx (BSTR LicenseKey, BSTR ComputerID);
C#: string ValidateLicenseEx (string LicenseKey, string ComputerID)
Parameters

 LicenseKey
: License Key to validate
ComputerID
: A string identifying the computer.

Return
 Error message if ValidateLicenseEx fails to validate or if the license is an evaluation license.

Page 313

ValidateSignature
 Validates the signature of a digitally signed XML document. This function can be used to validate the
signature of the QLM License Wizard settings XML file as well as the Product Properties XML file.
C#: bool ValidateSignature(string xmlValue, string publicKey, out string errorMessage)
Parameters

 xmlValue: The digitally signed XML document to validate.
publicKey: The public key to use when validating the signature. The public key is defined in the
QLM Management Console / Define Products / Encryption Keys / Encryption Keys used to
digitally sign license files.
errorMessage: If the signature is not valid, the errorMessage may contain details about the
failure.

Return
 True if the signature is valid.

Page 314

Version
 Returns the version of the QLM engine used to create the key. You must call ValidateLicense prior to
calling this function.
C++: _bstr_t Version
C#: string Version
Return

 Version of QLM Engine used to create the license key.

Page 315

WSCredentials
 By default, QLM uses anonymous authentication to connect to the QLM License Server.
To connect to the QLM License Server via Windows Authentication, you must set the credentials of the
user that will connect to the License Server.
Note that to configure the QLM console to connect to your License Server via Windows Authentication,
you must set the Authentication method in the QLM Console / Sites property sheet.
Example:

QlmLicense license = new QlmLicense ();
WSCredentials ws = new WSCredentials ("user", "pwd", "domain");
license.WSCredentials = ws;

Page 316

GetFirstMACAddress
 Gets the MAC address of the first network card found on the system. Note that some computer systems
have several network cards. This function returns the MAC address of the first card only. To get a list of
all MAC addresses on a system, use the GetMACAddresses method.
C++:
_bstr_t GetFirstMACAddress ();
C#:
string GetFirstMACAddress ();
Parameters

 None.
Return

 Returns the MAC address of the first network card found on the system.

Page 317

GetMACAddresses
 Gets the MAC addresses of all network cards found on the system.
C++:
_bstr_t GetMACAddresses ();
C#:
string GetMACAddresses ();
Parameters

 None.
Return

 Returns a semi colon separated list of MAC addresses.

Page 318

GetVolumeSerialNumber
 Gets the serial number of the specified volume.
C++:
_bstr_t GetVolumeSerialNumber (_bstr_t volume);
C#:
string GetVolumeSerialNumber (string volume);
Parameters

 volume: volume driver letter such as C:.
Return

 Returns the serial number of the specified volume.

Page 319

RunningOnHyperV
 Determines if the current process is running on a Microsoft Hyper-V virtual machine.
C++:
BOOL RunningOnHyperV ();
C#:
bool RunningOnHyperV ();
Parameters

 None.
Return

 Returns true if the current process is running on a Microsoft Hyper-V virtual machine.

Page 320

RunningOnVirtualBox
 Determines if the current process is running on a Virtual Boxv irtual machine.
C++:
BOOL RunningOnVirtualBox ();
C#:
bool RunningOnVirtualBox ();
Parameters

 None.
Return

 Returns true if the current process is running on a Virtual Box virtual machine.

Page 321

RunningOnVM
 Determines if the current process is running on a virtual machine such as Microsoft Hyper-V or
VMWare.
C++: BOOL RunningOnVM ();
C#: bool RunningOnVM ();
Parameters

 None.
Return

 Returns true if the current process is running on a Virtual Machine such as Microsoft Hyper-V
or VMWare.

Page 322

RunningOnVMWare
 Determines if the current process is running on a VMWare virtual machine.
C++:
BOOL RunningOnVMWare ();
C#:
bool RunningOnVMWare ();
Parameters

 None.
Return

 Returns true if the current process is running on a VMWare virtual machine.

Page 323

HTTP Methods
 The HTTP Methods are methods that can be invoked via a URL. These methods are typically invoked
from your eCommerce provider during the purchase process.
Note that all other methods exposed by the QLM License Server cannot be called directly via SOAP. In
order to communicate with the QLM License Server, you need to use the QLM .NET API methods that
are exposed via the QLMLicenseLib.dll.

Page 324

ActivateKey
 Activates a key over the internet.
To invoke this method via a URL:

http://yourserver/yourvirtualdirectory/qlmservice.asmx/ActivateKey?is_avkey=ABCD-EFGH-IJKL&is_
pcid=123456&is_productid=;<productID>&is_majorversion=<majorVersion>&is_minorversion=
<minorVersion>&is_vendor=fastspring
 where

 is_avkey = Activation Key
 is_pcid = Unique identifier of the computer
 is_computer_name = Name of the computer (optional)
 is_vendor = One of the supported vendors
 is_productid = your product id as defined in QLM
 is_majorversion = your product's major version as defined in QLM
 is minorversion = your product's minor version as defined in QLM
 is_email = Email address of the customer associated to this key (optional)
 is_userdata1 = User data to associate to the key (optional)
 is_affiliateid = Affiliate to associate to the key (optional
 is_qlmversion = 5.0.00 or earlier versions (optional)
 is_user = username defined for the selected eCommerce provider (optional)
 is_pwd = password defined for the seelcted eCommerce provider (optional)

Page 325

http://yourserver/yourvirtualdirectory/qlmservice.asmx/ActivateKey?is_avkey=ABCD-EFGH-IJKL&is_

AnalyticsAddInstallHttp
 Registers an installation with the server. You should call this function once when your application is
installed. You should store the returned installID in your application's settings and reuse it on subsequent
calls to the QlmAnalytics API. Note that to call this function, you must: Have a QLM Enterprise License
To invoke this method via a URL:

http://yourserver/yourvirtualdirectory/qlmservice.asmx/AnalyticsAddInstallHttp?is_swversion=1.0&is_os
version=Windows 7&...
;
where

 is_swversion= Version of your software
 is_osversion= Version of the operating system
 is_computer_name = Name of the computer
 is_computerID= Unique identifier of the computer
 is_avkey = activation key on the system
 is_pckey= computer key associated to the system
 is_trial= flag indicating if the license is a trial
 is_productname= name of your product
 is_majorversion = major version of your product
 is_minorversion= minor version of your product
 is_customdata1= your own custom data
 is_customdata2= your own custom data
 is_customdata3= your own custom data

Page 326

http://yourserver/yourvirtualdirectory/qlmservice.asmx/AnalyticsAddInstallHttp?is_swversion=1.0&is_os

AnalyticsRemoveInstallHttp
 Unregisters an application with the server. You should call this function when the user uninstalls your
application. Note that to call this function, you must: Have a QLM Enterprise License
To invoke this method via a URL:

http://yourserver/yourvirtualdirectory/qlmservice.asmx/AnalyticsRemoveInstallHttp?is_installid=35BC5B
3C-9102-46D5-BF75-29137A1F97E6
where

 is_installid = ID of the installation returned by the call to AnalyticsAddInstallHttp

Page 327

http://yourserver/yourvirtualdirectory/qlmservice.asmx/AnalyticsRemoveInstallHttp?is_installid=35BC5B

AnalyticsUpdateInstallHttp
 Updates information of a registered installation on the server. Note that to call this function, you must:
Have a QLM Enterprise License
To invoke this method via a URL:

http://yourserver/yourvirtualdirectory/qlmservice.asmx/AnalyticsUpdateInstallHttp?is_installid=35BC5B3
C-9102-46D5-BF75-29137A1F97E6&is_osversion=Windows 7&...
;
where

 is_installid = ID of the installation returned by the call to AnalyticsAddInstallHttp
 is_swversion= Version of your software
 is_osversion= Version of the operating system
 is_computer_name = Name of the computer
 is_computerID= Unique identifier of the computer
 is_avkey = activation key on the system
 is_pckey= computer key associated to the system
 is_trial= flag indicating if the license is a trial
 is_productname= name of your product
 is_majorversion = major version of your product
 is_minorversion= minor version of your product
 is_customdata1= your own custom data
 is_customdata2= your own custom data
 is_customdata3= your own custom data

Page 328

http://yourserver/yourvirtualdirectory/qlmservice.asmx/AnalyticsUpdateInstallHttp?is_installid=35BC5B3

AnalyticUpdateLastAccessedDateHttp
 Updates the Last Accessed Date associated to a registered installation on the server. Note that to call
this function, you must: Have a QLM Enterprise License
To invoke this method via a URL:

http://yourserver/yourvirtualdirectory/qlmservice.asmx/AnalyticUpdateLastAccessedDateHttp?is_installid
=35BC5B3C-9102-46D5-BF75-29137A1F97E6
where

 is_installid = ID of the installation returned by the call to AnalyticsAddInstallHttp

Page 329

http://yourserver/yourvirtualdirectory/qlmservice.asmx/AnalyticUpdateLastAccessedDateHttp?is_installid

EnableMaintenancePlan
 Enables the maintenance plan for a given activation key.

To invoke this method via a URL:

 http://yourserver/yourvirtualdirectory/qlmservice.asmx/EnableMaintenancePlan?is_avkey=
<activationKey>&is_maintplan=1&is_vendor=<vendor>&is_mainduration=<duration>
 where

 is_vendor = One of the supported vendors
 is_avkey = Activation Key
 is_maintplan = Flag to determine if the maintenance plan should be extended. If this argument is

specified , the maintenance plan is extended.
 is_maintdate = Date at which the new maintenance plan should expire
 is_maintduration = number of days by which to extend the maintenance plan as of today.
 is_user = username defined in Manage Keys / 3rd Party Extensions (optional)
 is_pwd = password defined in Manage Keys / 3rd Party Extensions (optional)

If neither is_maintdate nor is_mainduration are specified, the maintenance plan is extended based on the
maintenancePlanPeriodInDays settings in the QLM License Server config file (web.config). The default
value of maintenancePlanPeriodInDays is 365 days.
If is_maintdate and is_maintduration are both specified, is_maintdate takes precedence.
The format of the date in is_maintdate is based on the dateFormat
 settings in the License Server config file (web.config). The default format is: YYYY-MM-dd.
When invoking this method from an eCommerce provider, you can customize the url arguments for
is_avkey and is_maintplan. Customization of these arguments requires subclassing of the eCommerce
provider classes. For more details, contact us.

Page 330

http://yourserver/yourvirtualdirectory/qlmservice.asmx/EnableMaintenancePlan?is_avkey=

GetActivationKey
 Creates an activation key over the internet.
Note that to call this function, you must update the web.config on the web server as follows:
<setting name="enableGetActivationKey" serializeAs="String">
<value>True</value>
</setting>
To invoke this method via a URL:
 http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>
&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&is_vendor=fastspring
 where

 is_vendor = One of the supported vendors
 is_productid = your product id as defined in QLM
 is_majorversion = your product's major version as defined in QLM
 is minorversion = your product's minor version as defined in QLM
 is_qlmversion = 5.0.00 or earlier versions
 is_quantity = the number of licenses to create. Works in conjunction with

is_usemultipleactivationskey. Note that when calling this API from one of the supported
eCommerce Providers, you do not need to set is_quantity as it is automatically passed from the
eCommerce provider to QLM.

Optional Arguments:
 is_features: semi comma separated list of feature sets and their corresponding values. Example:

is_features=0:1;1:2;2:3;3:6.
 is_usemultipleactivationskey: when set to true or not set, if multiple licenses are ordered in the

same request, the system returns one activation key for all licenses. When set to false, the system
returns one activation key for each ordered license. The default is true. Example:
&is_usemultipleactivationskey=true

 is_additionalactivations: add a fixed number of activations to the generated license. Example:
is_additionalactivations=2

 is_numberofactivationsperkey: for each generated key, set the number of activations allowed.
Example: is_numberofactivationsperkey=3. This argument is only effective when
is_usemultipleactivationskey is false.

 is_user: username as defined in the eCommerce Providers section in QLM (Manage Keys /
Tools / eCommerce Providers). Example: &is_user=tom

 is_pwd: password as defined in the eCommerce Providers section in QLM (Manage Keys /
Tools / eCommerce Providers). Example: &is_pwd=pwd

 is_maintenance_plan: Set this value to 1 to enable the maintenance plan for this license. Example:
&is_maintenance_plan=1

 is_maintduration: Set this value to the duration of the maintenance plan. By default, a maintenance
plan is 365 days. The default value can be changed in the web.config file of the License Server.
Example: &is_maintduration=180

 is_additionalactivations: By default, the number of activations enabled for each generated license

key is based on the quantity of licenses purchased. For example, if a customer purchases 3
licenses, they will receive an activation key with 3 activations (is_usemultipleactivationskey must
be true). To provide additional activations, set this argument to the number of additional
activations that you require. Example: &is_additionalactivations=3

Page 331

http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&is_vendor=digibuy
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&is_vendor=digibuy
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&is_vendor=digibuy
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&is_vendor=digibuy
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&is_vendor=digibuy
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&is_vendor=digibuy
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&is_vendor=digibuy
http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKey?is_productid=

GetActivationKeyWithExpiryDate
 Creates an activation key with an expiry date over the internet.
Note that to call this function, you must update the web.config on the web server as follows:
<setting name="enableGetActivationKey" serializeAs="String">
<value>True</value>
</setting>
To invoke this method via a URL:
 http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKeyWithExpiryDate?is_productid=
<productID>&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&is_vendor=
fastspring&is_expduration=<duration>&is_expdate=<date>
 where

 is_vendor = One of the supported vendors
 is_productid = your product id as defined in QLM
 is_majorversion = your product's major version as defined in QLM
 is minorversion = your product's minor version as defined in QLM
 is_qlmversion = 5.0.00 or earlier versions
 is_expduration = duration of evaluation version in days.
 is_expdate = date at which the license will expire. The format of the date in is_expdate is based

on the dateFormat settings in the License Server config file (web.config). The default format is:
YYYY-MM-dd

 is_quantity = the number of licenses to create. Works in conjunction with
is_usemultipleactivationskey. Note that when calling this API from one of the supported
eCommerce Providers, you do not need to set is_quantity as it is automatically passed from the
eCommerce provider to QLM.

When calling GetActivationWithExpiryDate, an expiry date can be set by using the is_expduration or
is_expdate argument. For example, to create a license key that expires 31 days after purchase, you have
2 options:
- Use the is_expdate argument such as: &is_expdate="2015-03-01". The generated license will expire
on the specified date.
- Use the is_expduration argument such as: &is_expduration=31.
The useDurationToSetExpiryDate setting in the QLM License Server "Server Properties" determines the
behavior of the is_expduration argument. When useDurationToSetExpiryDate is true, an expiry date is
computed by the License Server based on the order date plus the is_expduration period. For example, if
a user purchased a 30 days subscription of your product on January 1st and is_expduration is set to 30,
the license will be set to expire on January 31st.
When useDurationToSetExpiryDate is set to false, the generated license key does not have a specific
expiry date but rather a duration based license key. This means that the license expiry date is determined
the first time the application is executed. For example, if a user purchased a 30 day subscription of your
product on January 1st, but then runs your product for the first time on January 15, the 30 day license
will only start on January 15.
Optional Arguments:

 is_features: semi comma separated list of feature sets and their corresponding values. Example:
is_features=0:3;1:1. This means that in feature set 0, features 1 + 2 are enabled and in feature set
1, feature 1 is enabled.

 is_usemultipleactivationskey: when set to true or not set, if multiple licenses are ordered in the
same request, the system returns one activation key for all licenses. When set to false, the system
returns one activation key for each ordered license. The default is true. Example:
&is_usemultipleactivationskey=true

 is_additionalactivations: add a fixed number of activations to the generated license. Example:

Page 332

http://yourserver/yourvirtualdirectory/qlmservice.asmx/GetActivationKeyWithExpiryDate?is_productid=

is_additionalactivations=2
 is_numberofactivationsperkey: for each generated key, set the number of activations allowed.

Example: is_numberofactivationsperkey=3. This argument is only effective when
is_usemultipleactivationskey is false.

 is_user: username as defined in the eCommerce Providers section in QLM (Manage Keys /
Tools / eCommerce Providers). Example: &is_user=tom

 is_pwd: password as defined in the eCommerce Providers section in QLM (Manage Keys /
Tools / eCommerce Providers). Example: &is_pwd=pwd

 is_maintenance_plan: Set this value to 1 to enable the maintenance plan for this license. Example:
&is_maintenance_plan=1

 is_maintduration: Set this value to the duration of the maintenance plan. By default, a maintenance
plan is 365 days. The default value can be changed in the web.config file of the License Server.
Example: &is_maintduration=180

 is_additionalactivations: By default, the number of activations enabled for each generated license
key is based on the quantity of licenses purchased. For example, if a customer purchases 3
licenses, they will receive an activation key with 3 activations (is_usemultipleactivationskey must
be true). To provide additional activations, set this argument to the number of additional
activations that you require. Example: &is_additionalactivations=3

 is_licensemodel: the license model can be one of: permanent | trial | subscription. Example:
&is_licensemodel=subscription

 is_computertype: specifies the type of the client computer. Possible values are: 0 | 1 | 2 . 0 sets
the computer type to 'none'. 1 sets the computer type to 'PC'. 2 sets the computer type to 'VM'.

Page 333

ReleaseLicenseHttp
 Releases a license key over Http. This API releases a license key so that it can be activated on another
computer.
To invoke this method via a URL:

 http://yourserver/yourvirtualdirectory/qlmservice.asmx/ReleaseLicenseHttp?is_avkey=<activationKey>
&is_pcid=<computer ID>&is_vendor=<eCommerce provider>
 where

 is_avkey= Activation key to deactivate.
 is_pcid = Computer identifier of the system being deactivated. This argument is required if the

license is a multiple activations key.
 is_vendor = name of the eCommerce provider
 is_user: username as defined in the eCommerce Providers section in QLM (Manage Keys /

Tools / eCommerce Providers). Example: &is_user=tom
 is_pwd: password as defined in the eCommerce Providers section in QLM (Manage Keys /

Tools / eCommerce Providers). Example: &is_pwd=pwd

Page 334

http://yourserver/yourvirtualdirectory/qlmservice.asmx/ReleaseLicenseHttp?is_avkey=

RenewMaintenancePlan
 Connects to the License Server and renews a maintenance plan for a given activation key. By default,
the maintenance plan is renewed with the period specified in the QLM Management Console / Manage
Keys / Sites / Server Properties / maintenancePlanPeriodInDays. The following arguments are required:

 is_avkey - The Activation Key to renew
 is_vendor - One of the supported eCommerce providers

The following arguments are optional:
 is_maintduration - duration in days of the maintenance plan
 is_user = username as defined in the eCommerce Providers section in QLM (Manage Keys /

Tools / eCommerce Providers) - This argument is optional
 is_pwd = password as defined in the eCommerce Providers section in QLM (Manage Keys /

Tools / eCommerce Providers) - This argument is optional

Page 335

RenewSubscriptionHttp
 Connects to the License Server and renews a subscription. When a subscription is renewed, each
activated license is automatically reactivated on the server and a new computer bound key is generated
with a new expiry date. When customers reactivate their license, they receive the new computer bound
key with the new expiry date, thus extending their subscription period.
To invoke this method via a URL:

 http://yourserver/yourvirtualdirectory/qlmservice.asmx/RenewSubscriptionHttp?is_avkey=
<activationKey>&is_vendor=<xyz>&is_expdate=<date>&is_user=<user>&is_pwd=<pwd>
where

 is_avkey = Activation Key that is being renewed. This argument is required.
 is_vendor = One of the supported eCommerce providers. This argument is required.
 is_expdate = date at which the license will expire. You must specify either is_expdate or

is_expduration.
 is_expduration = duration in days after which the license will expire. You must specify either

is_expdate or is_expduration.
 is_user = username as defined in the eCommerce Providers section in QLM (Manage Keys /

Tools / eCommerce Providers) - This argument is optional
 is_pwd = password as defined in the eCommerce Providers section in QLM (Manage Keys /

Tools / eCommerce Providers) - This argument is optional

Page 336

http://yourserver/yourvirtualdirectory/qlmservice.asmx/RenewSubscriptionHttp?is_avkey=

RevokeLicenseHttp
 Revokes a license key over Http. This API revokes a license key so that it can no longer be activated.
To invoke this method via a URL:

 http://yourserver/yourvirtualdirectory/qlmservice.asmx/RevokeLicenseHttp?is_avkey=<activationKey>
&is_vendor=<eCommerce provider>
 where

 is_avkey= Activation key to revoke.
 is_vendor = name of the eCommerce provider
 is_user: username as defined in the eCommerce Providers section in QLM (Manage Keys /

Tools / eCommerce Providers). Example: &is_user=tom
 is_pwd: password as defined in the eCommerce Providers section in QLM (Manage Keys /

Tools / eCommerce Providers). Example: &is_pwd=pwd

Page 337

http://yourserver/yourvirtualdirectory/qlmservice.asmx/RevokeLicenseHttp?is_avkey=

SubscribeToMailListHttp
 Subscribes or unsubscribes a user from the mail list.
To invoke this method via a URL:
 http://server/qlm/qlmservice.asmx/SubscribeToMailListHttp?is_email=user@cie.com&is_include=1
;
where

 is_email = email of customer
 is_include = 1 to subscribe, 0 to unsubscribe

Page 338

http://server/qlm/qlmservice.asmx/SubscribeToMailListHttp?is_email=user@cie.com&is_include=1

UpdateUserInformation
 Updates user information in the QLM License Server.
Note that to call this function, you must update the web.config on the web server as follows:
<setting name="enableGetActivationKey" serializeAs="String">
<value>True</value>
</setting>
To invoke this method via a URL:
 http://yourserver/yourvirtualdirectory/qlmservice.asmx/UpgradeLicense?is_vendor=digibuy&is_user=
<user_name>&is_pwd=<user_pwd>
 where

 is_vendor = One of the supported vendors
 is_user = username as defined in the eCommerce Providers section in QLM (Manage Keys /

Tools / eCommerce Providers)
 is_pwd = password as defined in the eCommerce Providers section in QLM (Manage Keys /

Tools / eCommerce Providers)
The following user related data must be sent as part of the POST data.

 FullName
 Email
 Phone
 Company
 Address1
 Address2
 City
 State
 Zip
 Country
 IP Address
 Notes
 Affiliate Name

The actual field names are e-commerce provider dependent. The supported e-commerce providers are
listed on our web site.
Additionally, if the is_avkey argument is added to the URL and specifies an Activation Key that is
already published to the QLM License Server, this function will associate the provided Activation Key to
the provided user.

Page 339

http://yourserver/yourvirtualdirectory/qlmservice.asmx/UpgradeLicense?is_vendor=

UpgradeLicense
 Upgrades a license by issuing a new license key and replacing the old one. You can upgrade the
following data associated to a license:

 Features associated to a license
 Expiry date of the license
 Duration of the license
 Major and Minor version of the product
 The version of the QLM Engine used to generate the license key

Note that to call this function, you must set the Server Property enableUpgradeLicense
 to true.
To invoke this method via a URL:
 http://yourserver/yourvirtualdirectory/qlmservice.asmx/UpgradeLicense?is_productid=<productID>
&is_majorversion=<majorVersion>&is_minorversion=<minorVersion>&is_vendor=digibuy
&is_features=<features>&is_expduration=<duration>&is_expdate=<date>
 where

 is_avkey = Activation Key that is being upgraded. This argument is required.
 is_vendor = One of the supported vendors
 is_productid = your product id as defined in QLM
 is_majorversion = your product's major version as defined in QLM
 is minorversion = your product's minor version as defined in QLM
 is_qlmversion = 5.0.00 or earlier versions
 is_features = semi comma separated list of feature sets and their corresponding values. Example:

is_features=0:3;1:1. This means that in feature set 0, features 1 + 2 are enabled and in feature set
1, feature 1 is enabled.

 is_expduration = duration of evaluation version
 is_expdate = date at which the license will expire
 is_user = username as defined in the eCommerce Providers section in QLM (Manage Keys /

Tools / eCommerce Providers)
 is_pwd = password as defined in the eCommerce Providers section in QLM (Manage Keys /

Tools / eCommerce Providers)

Page 340

http://yourserver/yourvirtualdirectory/qlmservice.asmx/UpgradeLicense?is_productid=

ValidateLicenseHttp
 Validates a license key over Http. This API validates and activates a license.

The first time you call ValidateLicenseHttp, you provide the activation key (is_avkey) and the computer
identifier (is_pcid). The server does the following:

 Validates the license
 Verifies if the license has not been previously activated
 Activates the license
 Returns the computer key and the set of features that are enabled.

On subsequent calls to ValidateLicenseHttp, in addition to the previous arguments, you should set the
computer key argument using the value returned from the first call. In this instance, the server does the
following:

 Validates the license
 Verifies if the license has not been revoked
 Returns the status of the license and the set of features that are enabled.

To invoke this method via a URL:

 http://yourserver/yourvirtualdirectory/qlmservice.asmx/ValidateLicenseHttp?is_avkey=
<activationKey> &is_pckey=<computer key> &is_pcid=<computer ID> &is_computer_name=
<computer name> &is_qlmversion=<QLM Engine version> &is_email=<email of the customer
associated to the key> &is_userdata1=<user data to associate to the key> &is_affiliateid=<affiliate
to associate to the key> &is_activate=<true | false> &s_writebom=<true | false>
 where

 is_avkey= Activation key to validate. If the key has never been activated, the key will be
activated and a computer key will be returned.

 is_pckey = If the key has been previously activated, the ValidateLicense method returns a
computer key. This computer key should then be used in subsequent calls to ValidateLicense in
the is_pckey argument.

 is_pcid = If the license has never been validated, you need to specify a computer identifier so that
the returned computer key can be bound to this specific computer. A computer ID can be the
name of the computer or any other unique identifier of your choice.

 is computer_name= This argument is not required. It is used to easily identify a computer, in case
the computer ID is a serial number such as the hard disk serial number.

 is_qlmversion = Version of the QLM engine. IT can be 5.0.00 or earlier versions.
 is_email = Email address of the customer associated to the license key. This argument is

optional.
 is_userdata1 = User data to associate to the license key. This argument is optional.
 is_affiliateid = Affiliate to associate to the license key .This argument is optional.
 is_activate = By default, ValidateLicenseHttp validates the license and activates it if needed. If

you just want to validate the license and return information about the license, set the is_activate
argument to false. If is_activate is not specified, the default value is true.

 is_writebom = Determines whether the byte-order-mark (BOM) is written in the returned xml
fragment. If no argument is specified, the default value is taken from the License Server's
web.config file "writeBOM" setting. The default value is false.

Optional but recommended arguments:
 is_productid: the ID of the product
 is_majorversion: the major version of the product
 is_minorversion: the minor version of the product

Note that the 3 optional arguments above are required if you use the QLM Maintenance Plan feature.

Page 341

http://yourserver/yourvirtualdirectory/qlmservice.asmx/ValidateLicenseHttp?is_avkey=

 .NET Control
 Following is a list of all the properties that can be set on the QLM .NET Control.
Name Description

QlmCloseButtonVisible Show or hide to Close button

QlmComputerID

Set the computer ID to use when activating the
license. This property should be typically set
programmatically at runtime.

QlmEncryptionKey

Set the encryption key. This property is only
required when using QLM engine version 4.0 and
earlier.

QlmEvaluationHaveKeyRadioButtonText

Only applies if the QlmEvaluationVisible property is
set to true. Set the text in the radio button when the
user has a license key.

QlmEvaluationLicenseKey

Only applies if the QlmEvaluationVisible property is
set to true. Set the evaluation key to use when the
user selects to evaluate the software and does not
have a license key.

QlmEvaluationTrialChecked
Only applies if the QlmEvaluationVisible property is
set to true. Checks the evaluation option by default.

QlmEvaluationTrialHelpText

Only applies if the QlmEvaluationVisible property is
set to true. Set the text to display under the
evaluation radio button.

QlmEvaluationTrialRadioButtonText

Only applies if the QlmEvaluationVisible property is
set to true. Set the text to display on the evaluation
radio button.

QlmEvaluationVisible

Enables the evaluation option. The evaluation
option displays two radio buttons. One radio button
allows the user to enter a license key and activate
the license while the other radio button allows the
user to evaluate the software by using an embedded
evaluation license key.

QlmFormBackColor
Set the starting Background Color of the form to
produce a gradient effect.

QlmFormBackColor2
Set the ending Background Color of the form to
produce a gradient effect.

QlmGUID Set the GUID associated to your product. The

Page 342

GUID can be found on the Define Product page in
the QLM Console.

QlmHeaderBackColor Set the Background Color of the header pane.

QlmLicenseStatus
Get the status of the license after it has been
validated. This is a read-only property.

QlmLicenseType
Set the license type. The license type can be:
ComputerName, UserDefined or Generic.

QlmLogoFont Set the font to use in the logo text.

QlmLogoImage Set the image to use for the logo.

QlmLogoText Set the text to use for the logo.

QlmMajorVersion

Set the Major Version associated to your product.
The Major Version can be found on the Define
Products page in the QLM Console.

QlmMinorVersion

Set the Minor Version associated to your product.
The Minor Version can be found on the Define
Products page in the QLM Console.

QlmProductID

Set the Product ID Version associated to your
product. The Product ID can be found on the
Define Products page in the QLM Console.

QlmProductName Set the Product Name associated to your product.

QlmProxyButtonVisible Show or hide the proxy settings button

QlmPublicKey

Set the Public Key associated to your product. The
Public Key Version can be found on the Define
Products page (Keys tab) in the QLM Console.

QlmStoreKeysLocation

By default, QLM stores the license keys in a hidden
file on the end user system. You can also select to
store the license keys in the registry by setting this
property.

QlmValidateCertificate

The QLM DLLs are digitally signed by a trusted
certificate authority. In order to ensure that hackers
do not replace the QLM DLLs by dummy ones,
QLM can validate that the DLLs are properly
signed.

Page 343

QlmCommunicationEncryptionKey

Set the communicationEncryptionKey to use when
connecting to the QLM License Server. The
communicationEncryptionKey must match the one
defined in the web.config file on the web server.

QlmWebServiceUrl
Set the URL to the QLM License Server. The
value of this url is typically:
http://yourdomain.com/qlm/qlmservice.asmx

Page 344

http://yourdomain.com/qlm/qlmservice.asmx
http://yourdomain.com/qlm/qlmservice.asmx

 .NET Control
 Following is a list of all the properties that can be set on the QLM .NET Control.
Name Description

QlmCloseButtonVisible Show or hide to Close button

QlmComputerID

Set the computer ID to use when activating the
license. This property should be typically set
programmatically at runtime.

QlmEncryptionKey

Set the encryption key. This property is only
required when using QLM engine version 4.0 and
earlier.

QlmEvaluationHaveKeyRadioButtonText

Only applies if the QlmEvaluationVisible property is
set to true. Set the text in the radio button when the
user has a license key.

QlmEvaluationLicenseKey

Only applies if the QlmEvaluationVisible property is
set to true. Set the evaluation key to use when the
user selects to evaluate the software and does not
have a license key.

QlmEvaluationTrialChecked
Only applies if the QlmEvaluationVisible property is
set to true. Checks the evaluation option by default.

QlmEvaluationTrialHelpText

Only applies if the QlmEvaluationVisible property is
set to true. Set the text to display under the
evaluation radio button.

QlmEvaluationTrialRadioButtonText

Only applies if the QlmEvaluationVisible property is
set to true. Set the text to display on the evaluation
radio button.

QlmEvaluationVisible

Enables the evaluation option. The evaluation
option displays two radio buttons. One radio button
allows the user to enter a license key and activate
the license while the other radio button allows the
user to evaluate the software by using an embedded
evaluation license key.

QlmFormBackColor
Set the starting Background Color of the form to
produce a gradient effect.

QlmFormBackColor2
Set the ending Background Color of the form to
produce a gradient effect.

QlmGUID Set the GUID associated to your product. The

Page 345

GUID can be found on the Define Product page in
the QLM Console.

QlmHeaderBackColor Set the Background Color of the header pane.

QlmLicenseStatus
Get the status of the license after it has been
validated. This is a read-only property.

QlmLicenseType
Set the license type. The license type can be:
ComputerName, UserDefined or Generic.

QlmLogoFont Set the font to use in the logo text.

QlmLogoImage Set the image to use for the logo.

QlmLogoText Set the text to use for the logo.

QlmMajorVersion

Set the Major Version associated to your product.
The Major Version can be found on the Define
Products page in the QLM Console.

QlmMinorVersion

Set the Minor Version associated to your product.
The Minor Version can be found on the Define
Products page in the QLM Console.

QlmProductID

Set the Product ID Version associated to your
product. The Product ID can be found on the
Define Products page in the QLM Console.

QlmProductName Set the Product Name associated to your product.

QlmProxyButtonVisible Show or hide the proxy settings button

QlmPublicKey

Set the Public Key associated to your product. The
Public Key Version can be found on the Define
Products page (Keys tab) in the QLM Console.

QlmStoreKeysLocation

By default, QLM stores the license keys in a hidden
file on the end user system. You can also select to
store the license keys in the registry by setting this
property.

QlmValidateCertificate

The QLM DLLs are digitally signed by a trusted
certificate authority. In order to ensure that hackers
do not replace the QLM DLLs by dummy ones,
QLM can validate that the DLLs are properly
signed.

Page 346

QlmCommunicationEncryptionKey

Set the communicationEncryptionKey to use when
connecting to the QLM License Server. The
communicationEncryptionKey must match the one
defined in the web.config file on the web server.

QlmWebServiceUrl
Set the URL to the QLM License Server. The
value of this url is typically:
http://yourdomain.com/qlm/qlmservice.asmx

Page 347

http://yourdomain.com/qlm/qlmservice.asmx
http://yourdomain.com/qlm/qlmservice.asmx

QLM Wizard .NET Control Reference
 Following is a list of all the properties that can be set on the QLM License Wizard .NET Control.
QLM Wizard - UI Properties
Name Description
QlmActivationMethodCaption Caption of the Activation Method page.
QlmActivationMethodCaptionFont Font of the caption of the Activation Method page.

QlmActivationMethodCaptionForeColor Foreground color of the caption of the Activation
Method page.

QlmActivationMethodTitle Title of the Activation Method page.
QlmActivationMethodTitleFont Font of the title of the Activation Method page.

QlmActivationMethodTitleForeColor Foreground color of the title of the Activation
Method page.

QlmActivationMethodTitleImage Image displayed to the left of the title of the
Activation Method page.

QlmBuyNowCaption Caption of the Buy Now button.
QlmBuyNowUrl URL associated to the Buy Now button.

QlmCloseFormOnFinish Automatically close the form when the user clicks
the Finish or Cancel button.

QlmDeactivateCaption Caption of the Deactivate radio button on the
Activation Method page.

QlmFontButtons Font to use on all buttons.
QlmFontLabels Font to use on all labels.
QlmFontRadioButtons Font to use on all radio buttons.
QlmFontResult Font to use in the result panel.
QlmFontText Font to use on all text fields.

QlmForeColorControls Foreground colors of all controls such as labels and
buttons.

QlmForeColorResult Foreground colors of the result panel that displays
the result of the license validation.

QlmForeColorText Foreground colors of all text fields.

QlmFormatLicenseKey Formats the license key by adding dash
separators.

QlmFormatLicenseKeyGroupSize
Size of the group of characters in a formatted
license. The QlmFormatLicenseKey property must
be true for this to take effect.

QlmFormBackColor Sets the background color of the wizard.

QlmFormBackColor2 Sets the 2nd gradient background color of the
wizard.

QlmFormCurvature Curvature of the corners of the wizard.
QlmGlowColor Background color of text fields when in focus.
QlmMessageExpired Sets the text to display if the license key expired.

QlmMessageRemainingDays
Sets the text to display when a trial license is still
valid. The message should include a {0} argument
to display the remaining days.

QlmMessageTrial Sets the text to display when a trial license is

Page 348

detected.
QlmOfflineActivationCaption Caption of the Offline Activation radio button.
QlmOnlineActivationCaption Caption of the Online Activation radio button.
QlmProductFont Set the font to use for the Product Name.
QlmProductForecolor Set the foreground color of the Product Name.

QlmProductImage Set the image displayed to the left of the product
name.

QlmProductTitle Sets the title of the product.
QlmShowBuyNowButton Show or hide the Buy Now button.
QlmShowBuyDeactivate Show or hide the Deactivate radio button.
QlmShowProxyButton Show or hide the Proxy Settings button.
QlmShowTryButton Show or hide the Try button.
QlmWizardTitle Title of the wizard.
QlmWizardTitleIcon Icon of the wizard.

QLM Wizard - License properties
Name Description

QlmCommunicationEncryptionKey

Set the communicationEncryptionKey to use when
connecting to the QLM License Server. The
communicationEncryptionKey must match the one
defined in the web.config file on the web server.

QlmEnableMultiByte Enable multibyte to support system with a
ComputerID that contains multibyte characters.

QlmEnableSoapExtension

By default, QLM sends custom headers with every
SOAP request and sends information to the server
related to the customer's locale. If this interferes
with your own SOAP extension, you can turn off
QLM's extension.

QlmEvaluationLicenseKey
Set the evaluation key to use when the user selects
to evaluate the software and does not have a
license key.

QlmEvaluationPerUser Sets whether the evaluation information is stored
per user or per machine.

QlmFavorMachineLevelLicenseKey
If a license key is stored both at the user level and
the machine level, set this property to true to favor
the key stored at the machine level.

QlmGUID
Set the GUID associated to your product. The
GUID can be found on the Define Product page in
the QLM Console.

QlmLicenseType Set the license type. The license type can be:
ComputerName, UserDefined or Generic.

QlmMajorVersion
Set the Major Version associated to your product.
The Major Version can be found on the Define
Products page in the QLM Console.

QlmMinorVersion Set the Minor Version associated to your product.
The Minor Version can be found on the Define

Page 349

Products page in the QLM Console.

QlmOverrideKeyStoreRegistry
Change the default registry key where QLM stores
license key information. This is strictly for
permanent licenses.

QlmProductID
Set the Product ID Version associated to your
product. The Product ID can be found on the
Define Products page in the QLM Console.

QlmProductName Set the Product Name associated to your product.

QlmPublicKey
Set the Public Key associated to your product. The
Public Key Version can be found on the Define
Products page (Keys tab) in the QLM Console.

QlmStoreKeysLocation Location where to store license keys. Keys can be
stored in a file on in the registry.

QlmStoreKeysOptions Set whether to store license keys per user, per
machine or both.

QlmValidateCertificate

The QLM DLLs are digitally signed by a trusted
certificate authority. In order to ensure that hackers
do not replace the QLM DLLs by dummy ones,
QLM can validate that the DLLs are properly
signed.

QlmVersion Version of the QLM License Engine to use. The
recommended value is 5.0.00.

QlmLicenseServerUrl
Set the URL to the QLM License Server. The
value of this url is typically:
http://yourdomain.com/qlm/qlmservice.asmx

Page 350

http://yourdomain.com/qlm/qlmservice.asmx
http://yourdomain.com/qlm/qlmservice.asmx

QLM License Wizard .NET Control Reference
 Following is a list of all the properties that can be set on the QLM License Wizard .NET Control.
UI Properties
Name Description
QlmBackColor Sets the background color of the wizard.

QlmBackColor2 Sets the 2nd gradient background color of the
wizard.

QlmIntroductionText97 When the QlmWizardStyle property is set to
Wizard97, sets the description text under the title.

QlmLeftPanelImage97 When the QlmWizardStyle property is set to
Wizard97, sets the image to use for the left panel.

QlmMainPanelImage Sets the image to use for the main panel.
QlmMessageExpired Sets the text to display if the license key expired.

QlmMessageRemainingDays
Sets the text to display when a trial license is still
valid. The message should include a {0} argument
to display the remaining days.

QlmMessageTrial Sets the text to display when a trial license is
detected.

QlmProceedText97
When the QlmWizardStyle property is set to
Wizard97, sets the text to display for proceeding to
the next page in the wizard.

QlmProductFont Set the font to use for the Product Name.
QlmTitleBackColor Sets the background color of the title.
QlmTitleBackColor2 Sets the 2nd gradient background color of the title.
QlmTitleFirstPage Sets the title of the first page of the wizard.
QlmTitleForm Sets the title of the wizard form.
QlmTitleProduct Sets the title of the product section.
QlmTitleWizard Sets the title of the wizard section.

QlmWizardStyle Sets the style of the wizard. The options are:
WizardAero or Wizard97.

QLM License object properties
Name Description

QlmEncryptionKey
Set the encryption key. This property is only
required when using QLM engine version 4.0 and
earlier.

QlmEvaluationLicenseKey
Set the evaluation key to use when the user selects
to evaluate the software and does not have a
license key.

QlmEvaluationPerUser Sets whether the evaluation information is stored
per user or per machine.

QlmFavorMachineLevelLicenseKey
If a license key is stored both at the user level and
the machine level, set this property to true to favor
the key stored at the machine level.

Page 351

QlmFormatLicenseKey Formats the license key by adding dash
separators.

QlmFormatLicenseKeyGroupSize
Size of the group of characters in a formatted
license. The QlmFormatLicenseKey property must
be true for this to take effect.

QlmGUID
Set the GUID associated to your product. The
GUID can be found on the Define Product page in
the QLM Console.

QlmLicenseType Set the license type. The license type can be:
ComputerName, UserDefined or Generic.

QlmMajorVersion
Set the Major Version associated to your product.
The Major Version can be found on the Define
Products page in the QLM Console.

QlmMinorVersion
Set the Minor Version associated to your product.
The Minor Version can be found on the Define
Products page in the QLM Console.

QlmProductID
Set the Product ID Version associated to your
product. The Product ID can be found on the
Define Products page in the QLM Console.

QlmProductName Set the Product Name associated to your product.

QlmPublicKey
Set the Public Key associated to your product. The
Public Key Version can be found on the Define
Products page (Keys tab) in the QLM Console.

QlmStoreKeysOptions Set whether to store license keys per user, per
machine or both.

QlmValidateCertificate

The QLM DLLs are digitally signed by a trusted
certificate authority. In order to ensure that hackers
do not replace the QLM DLLs by dummy ones,
QLM can validate that the DLLs are properly
signed.

QlmCommunicationEncryptionKey

Set the communicationEncryptionKey to use when
connecting to the The QLM License Server. The
communicationEncryptionKey must match the one
defined in the web.config file on the web server.

QlmLicenseServerUrl
Set the URL to the QLM License Server. The
value of this url is typically:
http://yourdomain.com/qlm/qlmservice.asmx

Page 352

http://yourdomain.com/qlm/qlmservice.asmx
http://yourdomain.com/qlm/qlmservice.asmx

Floating Licenses Share Model
 Quick License Manager Enterprise offers all the features of QLM Professional and in addition enables
you to implement floating licenses.
QLM Enterprise requires a database at the customer site to manage floating licenses. QLM supports 3
different file formats for the floating license database in varying levels of complexity: XML, MS-Access
and SQL Server.
For XML and MS-Access, all that is required on the end user site is a Windows Share that is accessible
to all computers on the network. The share must have read/write privileges. On the share, a specific
QLM database or XML file must be copied and activated. Below are the steps required to add floating
license support to your application:

 Upon purchase, issue an Activation Key to your customer. When creating the activation key, set
the FloatingSeats property to the number of seats purchased. If you are issuing the activation key
from your eCommerce provider via a URL, set the is_floating argument to true. If you are
creating the activation key via the QLM Management Console, set the Floating Seats field to the
number of purchased seats.

 Your customer installs your product.
 As part of your product's installation, you should install the QLM Floating License Database on a

network share accessible to all users, or on a SQL Server.
 Your customer enters the Activation Key in your product and clicks on Activate.
 Your application connects to the QLM License Server that you are hosting (over the internet)

and issues a computer bound key to the customer. The procedure so far is the same as for non
floating licenses.

 To initialize floating licenses support, you create an instance of the QlmFloatingLicenseMgr
object (for XML) or the QlmFloatingLicenseMgrDb (for MS-Access or SQL Server) object
(located in QlmLicense.dll).

 If you are using .NET, call one of the available constructors (except the default constructor).
 If you are using any other language, you need to create an instance of the

QlmFloatingLicenseMgr or QlmFloatingLicenseMgrDb class, then set either the
QlmLicenseObject or the SettingsFile properties. Check the API reference for more details.

 To initialize the location and password of the QLM Floating xml file or database, call
QlmFloatingLicenseMgr.InitializeDb

 To activate the QLM Floating database/xml, you then call
QlmFloatingLicenseMgr.RegisterLicense. This registers the license in the floating database with
information about the number of available seats. You can use the QLMLicenseWizad.exe to
register the license and database with the /floating_master and /floating_node command line
arguments.

 When your application starts up, you call the ActivateFloatingLicense method to register the
node.

 When your application exits, you call the ReleaseFloatingLicense method to release the node.
A License Viewer application is available and can be distributed with your application
(QlmLicenseViewer.exe). The License Viewer enables your customer to view allocated licenses and
release them if needed.
A sample showing how to implement floating licenses is provided in the following folder:
 %Public%\Documents\Quick License
Manager\Samples\QLMEnterprise\DotNet\C#\QlmEnterpriseSample

Page 353

Page 354

Floating Licenses
 The QLM Enterprise API includes all QLM Pro methods in addition to methods specific to QLM
Enterprise only features. The API Reference section covered here includes the methods that are specific
to QLM Enterprise. You can also use any method listed in the API Reference of QLM Pro.

Page 355

QlmFloatingLicenseMgr and QlmFloatingLicenseMgrDb
 This class manages floating licenses on the client's network. It interfaces with an XML file
(QlmFloatingLicenseMgr) or an MS-Access/SQL Server database (QlmFloatingLicenseMgrDb).
When the protected application is launched, ActivateFloatingLicense should be called to consume a
license. When the protected application exits, ReleaseFloatingLicense
 should be called to release the consumed license.
To initialize the QlmFloatingLicenseMgr object, you need to: Initialize the license object Initialize the
database location Register the license key
Initialization of the license object can be done in one of 2 ways: (a) by calling one of the constructors that
takes the settingsFile argument or (b) by calling the constructor that takes a fully initialized QlmLicense
object. The xml settingsFile must be generated by the Protect your application
 wizard.
Initialization of the database location can be done in one of 2 ways: (a) by calling one of the constructors
that takes the dbPath and dbPassword as arguments or (b) by calling the InitializeDb method. Note that
the default password that protects the qlmFloating.mdb database is Coraso23!
. It is highly recommended that you change this password.
Finally, to register the license key, you must call the RegisterLicense
 method.
Once these 3 steps completed, you can start calling ActivateFloatingLicense and
ReleaseFloatingLicense
.

Page 356

ActivateFloatingLicense
 Activates a floating license. This will consume one license if available. You should call this function when
your application is launched. If the function returns QlmActivationStatus.Activated or
QlmActivationStatus.AlreadyActivated, you can proceed with the launch of your application. Any other
value would indicate an issue and you should abort the launch of your application.
C#: QlmActivationStatus ActivateFloatingLicense(string computerID, string computerName, out string
message)

computerID - The ID of the computer on which the license should be activated.
computerName - The name of the computer on which the license should be activated.
message - A returned message with details about the operation.

QlmActivationStatus can have one of the following values:
Activated - The license was activated successfully.
AlreadyActivated - The license was already activated for this computer.
FailedToFindDb - The QLM Floating database was not found.
FailedToActivate - The activation failed.
InvalidLicense - The license key registered in the database is not valid.
NoMoreLicenses - There are no more licenses available.
NotActivated - The license was not activated.
Undefined - Initial value of this enum.

Page 357

ConcurrentAccessRetries
This property specifies how many attempts are made to read or write to the floating license xml file
before failing. If you expect over 100 concurrent users, you may want to increase this setting. The default
is 5.

Page 358

EnableAutomaticRegistration
When true, the QlmFloatingLicenseMgr class will check on a regular basis if the current node is still
registered in the floating license database/xml. If the current running node is no longer registered, it will be
automatically re-registered. In the event re-registration is not possible because all the licenses are
consumed, a violation event will be triggered.

Page 359

GetDbData
 Gets general settings stored in the floating license xml or database.
C#: bool GetDbData(out string dbPathInDb, out string dbDecryptedPathInDb, out string activationKey,
out string computerKey, out string computerID, out string errorMessage)

dbPathInDb - Encrypted value of the full path to the QLM Floating database as registred in the
database/xml.
dbDecryptedPathInDb - Non-encrypted full path to the QLM Floating database as registred in
the database/xml. If this value does not match the encrypted value, an error will be thrown. The
only time this can happen is if the path is manually modified in the xml file.
activationKey - Activation Key.
computerKey- Computer bound license key.
computerID - Identifier of the computer where the license was activated..
errorMessage - returned error message if the function fails.

Page 360

InitializeDb
 Initializes the path and password of the QLM Floating database. This function will throw an exception if
the path is not found. The folder where the database is located must be writable by all users.
C#: bool InitializeDb(string dbPath, string dbPassword, bool registerDb, out bool licenseRegistered, out
string errorMessage)

dbPath - Full path to the QLM Floating database, including the filename.
dbPassword - Password to open the QLM Floating database.
registerDb - when set to true, the DbPath in the floating license xml will be updated. This should
only be set to true once when configuring the xml location.
licenseRegistered - returned flag indicating if the license is already registered in the database.
errorMessage - returned error message if the function fails.

Page 361

IsFloatingLicenseRegistered
 Determines if a floating license is registerd. You can call this function randomly in your application to
verify if a user did not inadvertantly or maliciously release a license that is currently in use. A license can
be released by the end user if you give them access to the QLM License Viewer application
(QlmLicenseViewer.exe). This function should return QlmActivationStatus.AlreadyActivated. Any other
value would indicate an issue.
C#: public QlmActivationStatus IsFloatingLicenseRegistered(string computerID, string computerName,
out string message)

computerID - The ID of the computer on which the license should be activated.
computerName - The name of the computer on which the license should be activated.
message - A returned message with details about the operation.

QlmActivationStatus can have one of the following values:
Activated - The license was activated successfully.
AlreadyActivated - The license was already activated for this computer.
FailedToFindDb - The QLM Floating database was not found.
FailedToActivate - The activation failed.
InvalidLicense - The license key registered in the database is not valid.
NoMoreLicenses - There are no more licenses available.
NotActivated - The license was not activated.
Undefined - Initial value of this enum.

Page 362

QlmFloatingLicenseViolationEvent
 At a regular interval, the QlmFloatingLicenseMgr validates that the license of the current node is still
registered. This is to address the situation where a node is purposely or inadvertently released by a user
via the QLM Floating License Viewer. When a running node determines that it is no longer registered as
running, it will automatically attempt to re-register itself. Re-registration will be successful if there is a free
license available. If all licenses have been consumed by other nodes, the
QlmFloatingLicenseViolationEvent is fired. When this event is fired, you can decide what action to take
in your application, for example, quit the application.
C#: event QlmFloatingLicenseEventHandler QlmFloatingLicenseViolationEvent
Example:
QlmFloatingLicenseMgr floatingLicense = new QlmFloatingLicenseMgr();
floatingLicense.QlmFloatingLicenseViolationEvent += new
QlmFloatingLicenseEventHandler(OnFloatingLicenseViolationEvent);
public void OnFloatingLicenseViolationEvent(object sender, QlmFloatingLicenseViolationEventArgs e)
{
 MessageBox.Show("License violation detected. Status: " + e.Status);
}

Page 363

QlmLicenseObject
 Sets a fully initialize QlmLicense object.

This should typically be set from the constructor, however if the QlmFloatingLicenseMgr class is created
via COM instead of C#, you can only invoke the default constructor so you must set this property or the
SettingsFile property right after creating the QlmFloatingLicenseMgr object.

Note that you should either set the QlmLicenseObject property or the SettingsFile property but not
both.

Page 364

RegisterLicense
 Register the end user license in the qlmFloating DB. This is used to extract the number of floating seats.
C#: bool RegisterLicense(string activationKey, string computerKey, string computerID)
Parameters

 activationKey - Activation Key
computerKey - The computer key returned as a result of the activation process
computerID - The ID of the computer on which the license was activated. Note that in the
context of floating licensing, activation only occurs on one computer. The computerID specified
here is the ID of that computer.

Page 365

ReleaseFloatingLicense
 Releases a floating license. You should call this function when you exit your application.
C#: bool ReleaseFloatingLicense(string computerID, string computerName, out string message)

computerID - The ID of the computer on which the license should be activated.
computerName - The name of the computer on which the license should be activated.
message - A returned message with details about the operation.

Page 366

SettingsFile
 Set the full path of QLM settings files as generated by the Protect Your Application wizard.

This should typically be set from the constructor, however if the QlmFloatingLicenseMgr class is created
via COM instead of C#, you can only invoke the default constructor so you must set this property or the
QlmLicenseObject property right after creating the QlmFloatingLicenseMgr object.

Note that you should either set the QlmLicenseObject property or the SettingsFile property but not
both.

Page 367

ValidateLicenseLocation
 Validates that the location of the floating license database matches the value published to the license
server.
C#: bool ValidateLicenseLocation(string dbLocation, bool skipValidationIfNoInternet, out
QlmActivationStatus activationStatus, out string errorMessage)
Parameters

 dbLocation - Path to the floating license database.
skipValidationIfNoInternet - If the system does not have internet access, skip the validation and
assume everything is ok.
activationStatus - returns the activation status of the license. Possible values are:
QlmActivationStatus.Undefined, QlmActivationStatus.NotActivated,
QlmActivationStatus.Activated, QlmActivationStatus.InvalidLicense
errorMessage - returned error message in case of a failure

Page 368

GetFloatingLicenseLocation
 Gets the location of the floating license database (or xml file). The location can be set in the QLM
database using the SetFloatingLicenseLocation method. In order to ensure that a user has not duplicated
the floating license database, you can call SetFloatingLicenseLocation to set the location of the floating
license database when it is initially registered. Subsequently, when your application starts up, you can call
GetFloatingLicenseLocation and compare the registered location with the real location of the database.
C#: public bool GetFloatingLicenseLocation(string webServiceUrl, string activationKey, out string
location, out string message)
Parameters

 webServiceUrl - URL to the QLM License Server.
activationKey - activation key associated to this installation.
location - full path of the floating license DB or xml file.
message - return message in case of an error.

Page 369

SetFloatingLicenseLocation
 Sets the location of the floating license database (or xml file). In order to ensure that a user has not
duplicated the floating license database, you can call SetFloatingLicenseLocation to set the location of the
floating license database when it is initially registered. Subsequently, when your application starts up, you
can call GetFloatingLicenseLocation and compare the registered location with the real location of the
database.
C#: public bool SetFloatingLicenseLocation(string webServiceUrl, string activationKey, string location,
out string message)
Parameters

 webServiceUrl - URL to the QLM License Server.
activationKey - activation key associated to this installation.
location - full path of the floating license DB or xml file.
message - return message in case of an error.

Page 370

Analytics
 QLM Enterprise allows you to collect analytics about your application's usage.
In the first release of QLM v7, QLM can collect and reports analytics about installations of your
software application.
In subsequent releases, QLM will allow you to collect and report data on feature usage
.

Page 371

Analytics Installs
 To collect data about your application's installs and uninstalls, QLM provides 3 methods: AddInstall,
UpdateInstall and RemoveInstall.
AddInstall should be called during the installation of your application or the first time your application
runs.
UpdateInstall should be called if any of the data published to the server during installation was modified.
RemoveInstall should be called when your application is uninstalled.
To view reports about your applications installations, start the QLM Application and click on the
Analytics tab.
The Analytics tab displays two graphs and a table.
The Trial Installs
graph displays statistics about all the trial installs and uninstalls of your application.
The Permanent Installs
graph displays statistics about all the permanent installs and uninstalls of your application.
The All Installs
grid displays data about all installs and uninstalls.
 .

Page 372

AddInstall
 public bool AddInstall(string softwareVersion, string osVersion, string computerName, string
computerID, string activationKey, string computerKey, bool trial, string productName, int majorVersion,
int minorVersion, ref string installID).
Description
 Registers an installation with the server. You should call this function once when your application is
installed. You should store the returned installID in your application's settings and reuse it on subsequent
calls to the QlmAnalytics API.
Parameters

 softwareVersion: Version of your software
osVersion: Version of the operating system
computerName: Name of the computer
computerID: Unique identifier of the computer
activationKey: activation key on the system
computerKey: computer key associated to the system
productName: name of your product
majorVersion: major version of your product
minorVersion: minor version of your product
installID: unique identifier of this installation, returned from the server.

 Return
 Returns true if the data was successfully published to the server.

Page 373

AddInstall
 public bool AddInstall(string softwareVersion, string osVersion, string computerName, string
computerID, string activationKey, string computerKey, bool trial, string productName, int majorVersion,
int minorVersion, string customData1, string customData2, string customData3, ref string installID).
Description
 Registers an installation with the server. You should call this function once when your application is
installed. You should store the returned installID in your application's settings and reuse it on subsequent
calls to the QlmAnalytics API.
Parameters

 softwareVersion: Version of your software
osVersion: Version of the operating system
computerName: Name of the computer
computerID: Unique identifier of the computer
activationKey: activation key on the system
computerKey: computer key associated to the system
productName: name of your product
majorVersion: major version of your product
minorVersion: minor version of your product
customData1: your own custom data
customData2: your own custom data
customData3: your own custom data
installID: unique identifier of this installation, returned from the server.

 Return
 Returns true if the data was successfully published to the server.

Page 374

UpdateInstall
 public bool UpdateInstall(string installID, string softwareVersion, string osVersion, string
computerName, string computerID, string activationKey, string computerKey, bool trial, string
productName, int majorVersion, int minorVersion).
Description
 Updates information of a registered installation on the server.
Parameters

 installID: unique identifier of this installation, returned by a call to AddInstall
softwareVersion: Version of your software
osVersion: Version of the operating system
computerName: Name of the computer
computerID: Unique identifier of the computer
activationKey: activation key on the system
computerKey: computer key associated to the system
productName: name of your product
majorVersion: major version of your product
minorVersion: minor version of your product

 Return
 Returns true if the data was successfully published to the server.

Page 375

UpdateInstall
 public bool UpdateInstall(string installID, string softwareVersion, string osVersion, string
computerName, string computerID, string activationKey, string computerKey, bool trial, string
productName, int majorVersion, int minorVersion, string customData1, string customData2, string
customData3).
Description
 Updates information of a registered installation on the server.
Parameters

 installID: unique identifier of this installation, returned by a call to AddInstall
softwareVersion: Version of your software
osVersion: Version of the operating system
computerName: Name of the computer
computerID: Unique identifier of the computer
activationKey: activation key on the system
computerKey: computer key associated to the system
productName: name of your product
majorVersion: major version of your product
minorVersion: minor version of your product
customData1: your own custom data
customData2: your own custom data
customData3: your own custom data

 Return
 Returns true if the data was successfully published to the server.

Page 376

UpdateLastAccessedDate
 public bool UpdateLastAccessedDate(string installID).
Description
 Updates the Last Accessed Date associated to a registered installation on the server.
Parameters

 installID: unique identifier of this installation, returned from the server.
 Return

 Returns true if the data was successfully published to the server.

Page 377

RemoveInstall
 public bool RemoveInstall(string installID, out string errorMessage)

Description

Unregisters an application with the server. You should call this function when the user uninstalls your
application.
Parameters

 installID: unique identifier of this installation, returned from the server.
errorMessage: returned error message if the call fails.

 Return
 Returns true if the data was successfully published to the server.

Page 378

Protect Android Apps
 QLM Pro can protect Android applications with permanent, trial and device bound keys. A java
package (source code included) exposes an API that enables you to provide your customers with an
evaluation of your software and then turn it at anytime into a permanent license, or simply extend it for
subscription based applications. The java package along with a sample applications are provided in the
following QLM Pro samples folder:

 %Public%\documents\quick license manager\samples\qlmenterprise\Android\Qlm.Vendor.App
The sample contains 2 packages: com.soraco.qlm and com.vendor.app
com.soraco.qlm
 is the package that performs the license validation, activation, encryption, etc. You typically do not need
to change any code in this package. The QlmLicense class in this package is the main class you need to
interfact with. The most common methods of this class are document in the help under "Quick License
Manager Professional / API reference / Mobile Devices API".
com.vendor.app
 simulates your application. When the application is launched, the ValidateActivity class checks if a
license has ever been activated on the device. If no key was ever activated, the PrefsActivity is started to
allow the user to enter an Activation Key and activate it.
Use the QLM Pro Application to create an Activation Key from the Manage Keys tab. Note that
activation keys can be created from your server using our API or directly from one of the ecommerce
provider integrated with QLM. For a full list of ecommerce providers integrated with QLM, check the
help or our web site.
Once the user enters the Activation Key, the PrefsActivity class calls the QlmLicense.ActivateLicense
method. If activation is successful, encrypted license information is stored on the device. QLM uses RSA
asymmetric encryption to store license information on the device. The RSA public/private key pair is
automatically generated by QLM when you define a product in the QLM Application Define Products
page. The keys are displayed on the Encryption Keys tab / Mobile Devices Encryption.
Note that the encrypted data stored on the device is encrypted on the QLM server using the RSA
private key and decrypted on the device using the RSA public key.
On the Android application, the RSA public key must be stored in a file called QlmPublicKey.xml in the
assets folder.
In the event a client does not have an internet connection to activate a license online, you can perform an
offline activation
as described below:

 In the QLM applicatinon, under the Manage Keys tab, locate and select the license to activate.
 Click on the Activate button.
 Fill in the Computer ID field on the Activation tab along with other fields as required.
 Click on the Mobile Device Activation tab.
 Select a location where you would like to store a license file then click Ok.
 Send the generated license file to your customer and ask them to copy it to the folder where your

application expects the license file to be located.

Page 379

Protect .NET Android Apps
 QLM Pro can protect .NET / Xamarin applications running on Android devices with permanent, trial
and device bound keys.
A .NET library (source code included) exposes an API that enables you to provide your customers with
an evaluation of your software and then turn it at anytime into a permanent license, or simply extend it for
subscription based applications. The .NET library along with a sample applications are provided in the
following QLM Pro samples folder:

 %Public%\documents\quick license
manager\samples\qlmenterprise\Android\DotNet\QlmDotNetAndroidSample
The sample contains 3 project: QlmMonoAndroidLib, QlmXamLicenseLiband
QlmDotNetAndroidSample
QlmMonoAndroidLib
is the library that contains .NET Mono classes required for decrypting license information sent by the
QLM License Server.
QlmXamLicenseLib
is the library that performs the license validation, activation, decryption, etc. You typically do not need to
change any code in this package. The QlmLicense class in this package is the main class you need to
interfact with. The most common methods of this class are document in the help under "Quick License
Manager Professional / API reference / Mobile Devices API".
QlmDotNetAndroidSample
 simulates your application. When the application is launched, the application attemps to retrieve a stored
license on the device to validate it. If no key was ever activated, the user is prompted to enter an
Activation Key and activate it.
Use the QLM Pro Application to create an Activation Key from the Manage Keys tab. Note that
activation keys can be created from your server using our API or directly from one of the ecommerce
provider integrated with QLM. For a full list of ecommerce providers integrated with QLM, check the
help or our web site.
Once the user enters the Activation Key, you call the QlmLicense.ActivateLicense method. If activation
is successful, digitally signed license information is stored on the device. QLM uses RSA asymmetric
encryption to store license information on the device. The RSA public/private key pair is automatically
generated by QLM when you define a product in the QLM Application Define Products page. The keys
are displayed on the Encryption Keys tab / Mobile Devices Encryption.
Note that the encrypted data stored on the device is signed on the QLM server using the RSA private
key and verified on the device using the RSA public key.
In the QlmDotNetAndroidSample application, the RSA public key is stored in a file called
QlmPublicKey.xml. In your own application, it is recommended that you hard code the public key in
your code rather than store it in an external file.
In the event a client does not have an internet connection to activate a license online, you can perform an
offline activation
as described below:

 In the QLM applicatinon, under the Manage Keys tab, locate and select the license to activate.
 Click on the Activate button.
 Fill in the Computer ID field on the Activation tab along with other fields as required.
 Click on the Mobile Device Activation tab.
 Select a location where you would like to store a license file then click Ok.
 Send the generated license file to your customer and ask them to copy it to the folder where your

application expects the license file to be located.

Page 380

Protect iOS Apps
 QLM Pro can protect iOS applications with permanent, trial and device bound keys. An Objective-C
library (source code included) exposes an API that enables you to provide your customers with an
evaluation of your software and then turn it at anytime into a permanent license, or simply extend it for
subscription based applications. The Objective-C library along with a sample applications are provided
in the following QLM Pro samples folder:

 %Public%\documents\quick license manager\samples\qlmenterprise\iOS\QlmiOSSample
The sample contains 2 projects: QlmLicenseMobile and QlmMobileDeviceSample.
QlmLicenseMobile
 is the project that performs the license validation, activation, encryption, etc. You typically do not need
to change any code in this package. The QlmLicense class in this package is the main class you need to
interfact with. The most common methods of this class are document in the help under "Quick License
Manager Professional / API reference / Mobile Devices API".
QlmMobileDeviceSample
 simulates your application. When the application is launched, the application startup code checks if a
license has ever been activated on the device. If no key was ever activated, the user is required to enter
an Activation Key and activate it. If a key was previously activated, the license is validated to determine
if the license is still valid and has not expired.
Use the QLM Pro Application to create an Activation Key from the Manage Keys tab. Note that
activation keys can be created from your server using our API or directly from one of the ecommerce
provider integrated with QLM. For a full list of ecommerce providers integrated with QLM, check the
help or our web site.
Once the user enters the Activation Key, you call the QlmLicense.ActivateLicense method with the
required arguments. If activation is successful, encrypted license information is stored on the device.
QLM uses RSA asymmetric encryption to store license information on the device. The RSA
public/private key pair is automatically generated by QLM when you define a product in the QLM
Application Define Products page. The keys are displayed on the Encryption Keys tab / Mobile Devices
Encryption.
Note that the encrypted data stored on the device is encrypted on the QLM server using the RSA
private key and decrypted on the device using the RSA public key.
On the iOS application, the RSA public key should ideally be embedded in your application. The sample
code loads the public key from an external file called QlmPublicKey.xml but it is recommended that the
public key be hard coded in your applicaiton.
In the event a client does not have an internet connection to activate a license online, you can perform an
offline activation
as described below:

 In the QLM applicatinon, under the Manage Keys tab, locate and select the license to activate.
 Click on the Activate button.
 Fill in the Computer ID field on the Activation tab along with other fields as required.
 Click on the Mobile Device Activation tab.
 Select a location where you would like to store a license file then click Ok.
 Send the generated license file to your customer and ask them to copy it to the folder where your

application expects the license file to be located.

Page 381

Protect Mac OS X Apps
 QLM Pro can protect Mac OS X applications with permanent, trial and device bound keys. An
Objective-C library (source code included) exposes an API that enables you to provide your customers
with an evaluation of your software and then turn it at anytime into a permanent license, or simply extend
it for subscription based applications. The Objective-C library along with a sample applications are
provided in the following QLM Pro samples folder:

 %Public%\documents\quick license manager\samples\qlmenterprise\Mac\QlmMacSample
The sample contains 2 projects: QlmLicenseMobile and QlmMobileDeviceSample.
QlmLicenseMobile
 is the project that performs the license validation, activation, encryption, etc. You typically do not need
to change any code in this package. The QlmLicense class in this package is the main class you need to
interfact with. The most common methods of this class are document in the help under "Quick License
Manager Professional / API reference / Mobile Devices API".
QlmMobileDeviceSample
 simulates your application. When the application is launched, the application startup code checks if a
license has ever been activated on the device. If no key was ever activated, the user is required to enter
an Activation Key and activate it. If a key was previously activated, the license is validated to determine
if the license is still valid and has not expired.
Use the QLM Pro Application to create an Activation Key from the Manage Keys tab. Note that
activation keys can be created from your server using our API or directly from one of the ecommerce
provider integrated with QLM. For a full list of ecommerce providers integrated with QLM, check the
help or our web site.
Once the user enters the Activation Key, you call the QlmLicense.ActivateLicense method with the
required arguments. If activation is successful, encrypted license information is stored on the device.
QLM uses RSA asymmetric encryption to store license information on the device. The RSA
public/private key pair is automatically generated by QLM when you define a product in the QLM
Application Define Products page. The keys are displayed on the Encryption Keys tab / Mobile Devices
Encryption.
Note that the encrypted data stored on the device is encrypted on the QLM server using the RSA
private key and decrypted on the device using the RSA public key.
On the OS X application, the RSA public key should ideally be embedded in your application. The
sample code loads the public key from an external file called QlmPublicKey.xml but it is recommended
that the public key be hard coded in your applicaiton.
In the event a client does not have an internet connection to activate a license online, you can perform an
offline activation
as described below:

 In the QLM applicatinon, under the Manage Keys tab, locate and select the license to activate.
 Click on the Activate button.
 Fill in the Computer ID field on the Activation tab along with other fields as required.
 Click on the Mobile Device Activation tab.
 Select a location where you would like to store a license file then click Ok.
 Send the generated license file to your customer and ask them to copy it to the folder where your

application expects the license file to be located.

Page 382

Protect Java Desktop Apps
 QLM Pro can protect Java desktop applications with permanent, trial and device bound keys. A java
package (source code included) exposes an API that enables you to provide your customers with an
evaluation of your software and then turn it at anytime into a permanent license, or simply extend it for
subscription based applications. The java package along with a sample applications are provided in the
following QLM Pro samples folder:

 %Public%\documents\quick license
manager\samples\qlmenterprise\JavaDesktop\QlmJavaDesktopSample
The sample contains 2 packages: qlmLicenseMobile and qlmMobileDeviceSample.
qlmLicenseMobile
 is the package that performs the license validation, activation, decryption, etc. You typically do not need
to change any code in this package. The QlmLicense class in this package is the main class you need to
interfact with. The most common methods of this class are document in the help under "Quick License
Manager Professional / API reference / Mobile Devices API".
qlmMobileDeviceSample
 simulates your application. When the application is launched, the code checks if a license has ever been
activated on the device. If no key was ever activated, a dialog is launched to allow the user to enter an
Activation Key and activate it.
Use the QLM Pro Application to create an Activation Key from the Manage Keys tab. Note that
activation keys can be created from your server using our API or directly from one of the ecommerce
provider integrated with QLM. For a full list of ecommerce providers integrated with QLM, check the
help or our web site.
Once the user enters the Activation Key, the code calls the QlmLicense.ActivateLicense method. If
activation is successful, encrypted license information is stored on the system. QLM uses RSA
asymmetric encryption to store license information on the system. The RSA public/private key pair is
automatically generated by QLM when you define a product in the QLM Application Define Products
page. The keys are displayed on the Encryption Keys tab / Mobile Devices Encryption.
Note that the encrypted data stored on the device is encrypted on the QLM server using the RSA
private key and decrypted on the user system using the RSA public key.
In the event a client does not have an internet connection to activate a license online, you can perform an
offline activation
as described below:

 In the QLM applicatinon, under the Manage Keys tab, locate and select the license to activate.
 Click on the Activate button.
 Fill in the Computer ID field on the Activation tab along with other fields as required.
 Click on the Mobile Device Activation tab.
 Select a location where you would like to store a license file then click Ok.
 Send the generated license file to your customer and ask them to copy it to the folder where your

application expects the license file to be located.

Page 383

Android API
 The Android API provides classes that you can use from your Android application to validate or
activate license keys.
Note that all methods exposed by the QLM License Server cannot be called directly via SOAP. In order
to communicate with the QLM License Server, you need to use the QLM Android API methods that are
exposed via the com.soraco.qlm package.

Page 384

ActivateLicense
 Activates a license by connecting to a QLM License Server
boolean ActivateLicense(String webServiceUrl, String activationKey, String deviceID, String
computerKey, QlmResult qlmResult)
webServiceUrl: URL to the QLM License Server. Example:
https://qlm3.net/qlmdemov16/QlmLicenseServer/qlmservice.asmx
 activationKey: license key to activate, typically entered by the user in a license registration form.
deviceID: Unique identifier of the device.
computerKey: computer bound license key. This key is typically empty for the first activation. Upon
successful activation, a computer key is returned by the QLM License Server and stored on the device.
qlmResult: class that returns the result of the activation
 Return

 True if the activation succeeded.
False if the activation failed.

Page 385

https://qlm3.net/qlmdemov16/QlmLicenseServer/qlmservice.asmx

getStatus
 Returns the last status. See ELicenseStatus for possible values.

int getStatus ()
Return

 Validation status of the license key.

Page 386

getExpiryDate
 Returns the expiry date of the evaluation key.
Date getExpiryDate()
Return

 Expiry date of the evaluation key.

Page 387

getRemainingDays
 Returns the number of days remaining in the trial.

int getRemainingDays ()
Return

 Days remaining in the trial.

Page 388

IsLicenseValid
 Checks if a license is valid
boolean IsLicenseValid()
Return

 True if the license is valid.
False if the license is not valid.

Page 389

QLM Portal
 The QLM Portal provides a web inteface for managing license keys.
To access the portal, you need to create a user account. User Accounts are created from the QLM
Management Console under Manage Keys / User Accounts. Your QLM Portal license entitles you to
create a single user account. If you would like to create additional accounts for internal use or for your
affiliates, you need to purchase QLM Portal User Licenses from our web site. Each User Account is
associated to a User Profile. User Profiles determine what users can view, create or modify via the QLM
Portal. A User Accounts associated with the built-in User Profile "None" can perform any action and
view all data. This is equivalent to an Administrator account You can configure the following restrictions
for User Profiles:

 Maximum number of trial keys per system
 Maximum number of permanent keys per system
 Maximum total keys
 Maximum activations per key

In addition, you can control what operations a user can perform from the QLM Portal:
 Creating new keys
 Activating keys
 Releasing keys
 Deleting keys
 Creating customers
 Deleting customers
 Exporting keys
 Setting the Expiry Duration of a new key
 Settings the Expiry Date of a new key
 Settings the Maintenance Plan option
 Setting the Generic license option

Page 390

QLM Portal
 The QLM Portal provides a web inteface for managing license keys.
To access the portal, you need to create a user account. User Accounts are created from the QLM
Management Console under Manage Keys / User Accounts. Your QLM Portal license entitles you to
create a single user account. If you would like to create additional accounts for internal use or for your
affiliates, you need to purchase QLM Portal User Licenses from our web site. Each User Account is
associated to a User Profile. User Profiles determine what users can view, create or modify via the QLM
Portal. A User Accounts associated with the built-in User Profile "None" can perform any action and
view all data. This is equivalent to an Administrator account You can configure the following restrictions
for User Profiles:

 Maximum number of trial keys per system
 Maximum number of permanent keys per system
 Maximum total keys
 Maximum activations per key

In addition, you can control what operations a user can perform from the QLM Portal:
 Creating new keys
 Activating keys
 Releasing keys
 Deleting keys
 Creating customers
 Deleting customers
 Exporting keys
 Setting the Expiry Duration of a new key
 Settings the Expiry Date of a new key
 Settings the Maintenance Plan option
 Setting the Generic license option

Page 391

Installing the QLM Portal
 The QLM portal can be installed via the setup (QlmLicenseServerSetup.exe) or manually.
If you can run a setup program on your web server, run the QlmLicenseServerSetup.exe on your server
and make sure that the QLM Portal feature is selected.
If you cannot run a setup program on your web server, following are the manual steps to install the QLM
Portal:

 Create a virtual directory on your web server called: QlmPortal
 Upload all the files in the %Public%\Public Documents\Quick License

Manager\DeployToServer\QlmPortal folder to the QlmPortal virtual directory
 Enable ASP.NET 4.0 for the virtual directory.
 Customize the following appSettings in the web.config file as follows:

o communicationEncryptionKey
o adminEncryptionKey
o sqlSyntax
o webServiceUrl

 Additionally, you should customize the connectionStrings settings in the web.config file to the
same values as the web.config of the QLM License Server.

The QLM portal uses ASP.NET forms authentication to validate users. To enable ASP.NET forms
authentication, the QLM database needs to be updated to maintain authentication information. If you
have recently purchased or are evaluating QLM, this step is already performed during the normal setup.
If you are ugprading from QLM v6 or earlier, you must run the sql2005.aspnet.sql script located in the
following folder:

%Public%\Public Documents\Quick License Manager\DeployToServer\QlmLicenseServer\Db

Page 392

Registering your license
 To register your license and enable the QLM Portal add-on:

 Start the QLM Application
 Go to the Manage Keys tab
 Click on Sites
 Select your License Server profile
 In the Portal License Key field, enter your QLM Portal license key and click on Register. Note

that the QLM Portal License Key is not the same as your QLM Professional or Enterprise
license key. If you have not purchased the QLM Portal add-on, you can do so from our web
site.

Page 393

Accessing the QLM Portal
 The first step in setting up a portal is to create the Administrator's user account. To do so, start the
QLM Application and:

 Go to the Manage Keys tab.
 Click on User Accounts in the Portal group.
 Click on the Add button to create a new user account.
 Fill in all the fields as required. When asked to associate a User Profile with the user account, if

you select None, the user will be able to create an unlimited amount of keys. If you select a User
Profile, the user will be an Administrator.

Now that you have an account, you may login to the portal at the following URL:
http://yourserver/qlmportal/qlmportal.aspx

To create a user account for your end-users or affiliates:
 Go to the Manage Keys tab.
 Click on User Profiles in the Portal group.
 Click on the Add button to create a new User Profile. You can control how many license keys

the user can create, for which products they can create license keys and what operations they are
allowed to perform.

 Once the User Profile is created, click on User Accounts in the Portal group.
 Click on the Add button to create a new user account and select the corresponding User Profile

from the User Profile dropdown.
On the QLM Portal, users can only see customers that they are associated to. If a customer is created
from the QLM Portal, the customer is automatically associated to the logged in user profile. If a customer
is created from the QLM Management Console / Manage Customers tab, you can associate the
customer to a User Profile when the customer is created or at any other time by clicking on the Manage
Customers / Edit option.

Page 394

http://yourserver/qlmportal/qlmportal.aspx

	What's new in QLM 16
	Overview
	Getting Started
	License key types
	Embed features in a license key
	Redistributables
	Protect your software

	User Interface Guide
	Get Started
	Define Products
	Protect your application
	Manage Keys
	License Keys
	Create
	Activate

	Export
	Fraud Detection
	Mail
	License Server
	Server Properties
	Tools
	QLM Portal

	Manage Customers
	Backup
	Generate license keys
	Validate Keys
	About

	Quick License Manager Express
	QLM Express License Validation .NET Control
	Distribute your application
	Distribute your application using the QLM .NET API
	Distribute your application using a Visual Studio Deployment Project
	Distribute your application using a manual procedure
	Localization
	64 bit support

	API Reference
	.BackwardCompatible
	CreateLicenseKey
	CreateLicenseKeyEx
	CreateLicenseKeyEx2
	CreateLicenseKeyEx3
	CreateLicenseKeyEx4
	CreateLicenseKeyEx5
	DaysLeft
	DefineProduct
	Duration
	ELicenseStatus
	ELicenseType
	EvaluationPerUser
	ExpiryDate
	Features
	GetStatus
	IsEvaluation
	IsFeatureEnabled
	IsFeatureEnabledEx
	IsValid
	LicenseType
	NumberOfLicenses
	MajorVersion
	MinorVersion
	PrivateKey
	PublicKey
	ProductID
	ValidateLicense
	ValidateLicenseEx
	ValidateLicenseEx2
	ValidateLicenseEx3
	ValidateFile
	Version

	Quick License Manager Professional
	Overview
	License Server
	Configure the database
	Windows Azure Integration
	License Server Disaster Recovery
	Mutliple Activations Key
	Online activation Workflow 1
	Online activation Workflow 2
	Integrate QLM with your application
	Windows
	.NET Windows Forms
	Online activation using the QLM .NET Basic Activation Control
	Online activation using the QLM .NET License Wizard Control
	Online activation using the QLM API

	.NET Web Applications
	Mobile
	Windows 8 Store
	Windows Phone Devices

	Other Languages
	Online Activation using QLM License Wizard Application
	Online activation using an http request

	3rd Party Extensions
	eCommerice Providers - Basic
	eCommerce Providers - Advanced
	Supported Providers
	Avangate
	Cleverbridge
	Digibuy
	FastSpring
	Google Checkout
	Paypal
	Plimus
	Regnow
	ShareIt
	SWREG
	UltraCart

	Add your eCommerce Provider

	Check for Updates
	Terminal Server
	Scheduled Tasks
	Maintenance Plan
	Subscription Licensing
	Affiliates
	Server Event Log
	Illegal Computers
	Deactivating a license
	Calling the QLM .NET API from VB or C++
	License Site
	Distribute your application
	Files to include in your setup
	Localization

	Troubleshooting
	API reference
	License Server Application API
	QlmLicense
	ActivateLicense
	ActivateLicenseByField
	ActivateLicenseEx
	ActivateLicenseDialog
	ActivateLicenseForUser
	AddUser
	AddUserEx2
	CreateComputerBoundTrialKey
	GetCustomerInfo
	GetDashboardInfo
	GetDashboardLicenseInfo
	GetLatestVersion
	GetLicenseInfo
	GetOrder
	GetProductInfo
	GetSubscriptionExpiryDate
	GetUserData
	GetMaintenancePlanRenewalDate
	GetMaintenancePlanRenewalDateByComputerKey
	GetRemainingActivations
	GetUserDataFromActivationLog
	IsIllegalComputer
	IsLicenseKeyActivated
	IsLicenseKeyRevoked
	IsLicenseKeyValid
	Ping
	ReleaseLicense
	SetUserData
	SetUserDataInActivationLog
	SubscribeToMailList
	UpdateUser

	License Server Management API
	QlmLicense
	CreateActivationKey
	CreateActivationKeyEx
	CreateActivationKeyWithExpiryDate
	CreateActivationKeyWithExpiryDateEx
	CreateActivationKeyWithExpiryDateEx2
	CreateActivationKeyWithExpiryDateEx3
	CreateActivationKeyWithExpiryDateEx4
	CreateActivationKeyWithExpiryDateEx5
	CreateActivationKeyWithExpiryDateEx6
	CreateActivationKeyWithExpiryDateEx7
	CreateOrder
	CreateOrderEx
	DeleteLicense
	DowloadProducts
	GetCustomersInfo
	GetCustomersInfoEx
	GetDataSet
	GetDataSetEx
	RenewSubscription
	SetMaintenancePlanRenewalDate
	UpdateActivationLogInfo
	UpdateLicenseInfo
	UpdateLicenseKey
	UpdateOrderStatus
	UpgradeLicense
	UpgradeLicenseEx
	UploadProducts

	Client Side API
	QlmLicense
	BackwardCompatible
	CreateLicenseKey
	CreateLicenseKeyEx
	CreateLicenseKeyEx2
	CreateLicenseKeyEx3
	CreateLicenseKeyEx4
	CreateLicenseKeyEx5
	DaysLeft
	DefineProduct
	DeleteKeys
	DeleteKeysEx
	Duration
	ELicenseStatus
	ELicenseType
	EvaluationPerUser
	ExpiryDate
	FavorMachineLevelLicenseKey
	Features
	GetStatus
	IsEvaluation
	IsFeatureEnabled
	IsFeatureEnabledEx
	IsValid
	LicenseType
	LimitTerminalServerInstances
	NumberOfLicenses
	MajorVersion
	MinorVersion
	LoadSettings
	ParseResults
	PrivateKey
	ProductID
	ProxyUser
	ProxyPassword
	ProxyDomain
	PublicKey
	ReadCookie
	ReadFloatingLicenseLocation
	ReadKeys
	StoreCookie
	StoreFloatingLicenseLocation
	StoreKeys
	StoreKeysEx
	StoreKeysLocations
	StoreKeysOptions
	UseProxy
	ValidateFile
	ValidateLicense
	ValidateLicenseEx
	ValidateSignature
	Version
	WSCredentials

	QlmHardware
	GetFirstMACAddress
	GetMACAddresses
	GetVolumeSerialNumber
	RunningOnHyperV
	RunningOnVirtualBox
	RunningOnVM
	RunningOnVMWare

	License Server Http Methods
	ActivateKey
	AnalyticAddInstallHttp
	AnalyticsRemoveInstallHttp
	AnalyticsUpdateInstallHttp
	AnalyticsUpdateLastAccessedDateHttp
	EnableMaintenancePlan
	GetActivationKey
	GetActivationKeyWithExpiryDate
	ReleaseLicenseHttp
	RenewMaintenancePlan
	RenewSubscriptionHttp
	RevokeLicenseHttp
	SubscripteToMailListHttp
	UpdateUserInformation
	UpgradeLicense
	ValidateLicenseHttp

	.NET Control Reference
	QLM .NET Basic Activation Control
	QLM Wizard .NET Control
	QLM License Wizard .NET Control

	Quick License Manager Enterprise
	Floating Licenses
	Process Diagram
	API Reference
	QmlFloatingLicenseMgr
	ActivateFloatingLicense
	ConcurrentAccessRetries
	EnableAutomaticRegistration
	GetDbData
	InitializeDB
	IsFloatingLicenseActivated
	QlmFloatingLicenseViolationEvent
	QlmLicenseObject
	RegisterLicense
	ReleaseFloatingLicense
	SettingsFile
	ValidateLicenseLocation

	QlmLicense
	GetFloatingLicenseLocation
	SetFloatingLicenseLocation

	Analytics
	Installs
	API Reference
	QlmAnalytics
	AddInstall
	AddInstallEx
	UpdateInstall
	UpdateInstallEx
	UpdateLastAccessedDate
	RemoveInstall

	Non-Windows Platforms
	Android (Java)
	Android (Xamarin)
	iOS
	Mac OS X
	Java Desktop
	Mobile Devices API
	QlmLicense
	ActivateLicense
	getStatus
	getExpiryDate
	getRemainingDays
	IsLicenseValid

	QLM Portal
	Overview
	Installation
	Register License
	Accessing the portal

